'Spaghetti' scaffolding could help grow skin in labs

Oct 16, 2009

Scientists are developing new scaffolding technology which could be used to grow tissues such as skin, nerves and cartilage using 3D spaghetti-like structures. Their research is highlighted in the latest issue of Business, the quarterly highlights magazine of the Biotechnology and Biological Sciences Research Council.

The new structures are being developed by scientists from the University of Bristol, using proteins from alpha helices - one of the fundamental ways that strings of fold - to create long fibres called hydrogelating self assembling fibres (hSAFs), or hydrogels. By learning how to build hSAFs from scratch, the researchers are starting to understand how they might use these 3D scaffolds to support the growth of nerves, blood vessels and cartilage tailored to the needs of individual patients.

Professor Dek Woolfson who is leading the work, explains: "To make hydrogels you need something long and thin that will interact with copies of itself and form meshes, but is also water soluble. However rather than using natural proteins, which are complex, we've tried to make something as simple as possible that we fully understand using peptides and self assembling proteins."

Currently, structures, made either synthetically or from natural resources such as seaweed, are used in everyday products from shampoos to drug capsules.

But explains, Professor Woolfson, the hSAFs his team are developing will have different uses: "The downside of using or proteins is that they are expensive compared with synthetic polymers. We are almost certainly looking at high end biomedical applications, generating cells which can be used in living systems. Potential medical benefits include growing tissues such as skin, nerves and cartilage in the laboratory which will advance basic research and may lead to biomedical applications like speeding up wound healing and grafting."

Commenting on the research, BBSRC Chief Executive Professor Doug Kell, said: "This research highlights the importance of understanding how things work at a micro level and then looking at different ways to apply this knowledge to create effective solutions for tackling everyday problems, in this instance, translating basic bioscience into technology which could have very real clinical benefits for patients."

This research is featured in the latest edition of Business, the quarterly magazine of BBSRC.

More information: To read the full article, click here.

Source: Biotechnology and Biological Sciences Research Council (news : web)

Explore further: New technique reveals immune cell motion through variety of tissues

add to favorites email to friend print save as pdf

Related Stories

Structural biology spin-out tackles major diseases

Aug 07, 2008

A spin out company from basic structural biology, Asterion Ltd., has led to new technology that provides a way of creating therapeutic proteins to tackle major diseases such as cancer, diabetes and infertility. The research ...

Scientists move closer to bio-engineered bladders

Aug 01, 2007

Researchers at the University of York are using an understanding of the special cells that line the bladder to develop ways of restoring continence to patients with serious bladder conditions, including cancer.

New discovery reveals fate of nanoparticles in human cells

Sep 22, 2009

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have uncovered what happens to biomimetic nanoparticles when they enter human cells. They found that the important proteins that make ...

Mathematicians help unlock secrets of the immune system

Oct 09, 2007

A group of scientists, led by mathematicians, has taken on the challenge of building a common model of immune responses. Their work will radically improve our understanding of the human immune system by allowing all the scientific ...

Recommended for you

'Global positioning' for molecules

Dec 19, 2014

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.