Physicist wins Packard Fellowship

Oct 16, 2009
Pablo Jarillo-Herrero (inset) has won a 2009 David and Lucile Packard Fellowship. The image here shows the crystallographic structure of graphene, a novel material that Jarillo-Herrero plans to study with his Packard grant. Images courtesy of Pablo Jarillo-Herrero

( -- MIT physicist Pablo Jarillo-Herrero has won a 2009 David and Lucile Packard Fellowship, an award he will use to study a new class of materials that could have applications in the semiconductor industry and quantum computing.

MIT physicist Pablo Jarillo-Herrero has won a 2009 David and Lucile Packard Fellowship, an award he will use to study a new class of materials that could have applications in the and .

The five-year, $875,000 grant will allow Jarillo-Herrero to explore the unique features of and a type of materials known as topological insulators, whose electrons display unique behavior.

In most everyday materials, including metals and silicon, electrons behave just like other particles with mass — for example, their velocity depends on their energy.

Recently, scientists have discovered a new class of materials — including graphene and topological insulators — whose electrons behave more like massless particles such as neutrinos or photons rather than electrons. Electrons in these materials are described by putting Albert Einstein's special relativity and together. "This grant is going to allow me to perform experiments to characterize and explore the fascinating behavior of electrons in these materials," says Jarillo-Herrero.

Graphene, a single layer sheet of arranged in a lattice, was discovered in 2004, and the first known topological insulator, an alloy of bismuth and antimony, was reported in 2007.

These new materials also exhibit high electron mobility, raising hopes that they could lead to smaller, faster computer chips, potentially replacing silicon.

While graphene is a two-dimensional example of this kind of material, topological insulators have three dimensions. A thin surface layer that exhibits the same relativistic seen in graphene coats an insulating interior. The in the surface are insensitive to any impurities added to the surface, making topological insulators potential candidates for quantum bits, which could be used to build a robust quantum computer.

"You could, theoretically and hopefully experimentally, do quantum operations not affected by the environment," says Jarillo-Herrero, who is one of 16 recipients of this year's Packard Fellowships.

The Packard grants are similar to the MacArthur Fellowships — also known as "genius" grants — in that the funding is unrestricted: the recipients may use it as they choose. But while the MacArthur grants are shrouded in secrecy, the Packard fellows are nominated by the presidents of 50 universities that participate in the Packard Fellowship program.

MIT alumni Kevin Janes PhD '05 and Peter Huybers SM '02, PhD '04 also won Packard Fellowships this year.

Provided by Massachusetts Institute of Technology (news : web)

Explore further: Tiny particles have big potential in debate over nuclear proliferation

add to favorites email to friend print save as pdf

Related Stories

New exotic material could revolutionize electronics

Jun 15, 2009

Move over, silicon -- it may be time to give the Valley a new name. Physicists at the Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have confirmed the existence ...

Super-efficient Transistor Material Predicted

May 15, 2009

( -- New work by condensed-matter theorists at the Stanford Institute for Materials and Energy Science at SLAC National Accelerator Laboratory points to a material that could one day be used to ...

Recommended for you

New method for non-invasive prostate cancer screening

6 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

7 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

8 hours ago

( —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

12 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0