Physicist wins Packard Fellowship

Oct 16, 2009
Pablo Jarillo-Herrero (inset) has won a 2009 David and Lucile Packard Fellowship. The image here shows the crystallographic structure of graphene, a novel material that Jarillo-Herrero plans to study with his Packard grant. Images courtesy of Pablo Jarillo-Herrero

(PhysOrg.com) -- MIT physicist Pablo Jarillo-Herrero has won a 2009 David and Lucile Packard Fellowship, an award he will use to study a new class of materials that could have applications in the semiconductor industry and quantum computing.

MIT physicist Pablo Jarillo-Herrero has won a 2009 David and Lucile Packard Fellowship, an award he will use to study a new class of materials that could have applications in the and .

The five-year, $875,000 grant will allow Jarillo-Herrero to explore the unique features of and a type of materials known as topological insulators, whose electrons display unique behavior.

In most everyday materials, including metals and silicon, electrons behave just like other particles with mass — for example, their velocity depends on their energy.

Recently, scientists have discovered a new class of materials — including graphene and topological insulators — whose electrons behave more like massless particles such as neutrinos or photons rather than electrons. Electrons in these materials are described by putting Albert Einstein's special relativity and together. "This grant is going to allow me to perform experiments to characterize and explore the fascinating behavior of electrons in these materials," says Jarillo-Herrero.

Graphene, a single layer sheet of arranged in a lattice, was discovered in 2004, and the first known topological insulator, an alloy of bismuth and antimony, was reported in 2007.

These new materials also exhibit high electron mobility, raising hopes that they could lead to smaller, faster computer chips, potentially replacing silicon.

While graphene is a two-dimensional example of this kind of material, topological insulators have three dimensions. A thin surface layer that exhibits the same relativistic seen in graphene coats an insulating interior. The in the surface are insensitive to any impurities added to the surface, making topological insulators potential candidates for quantum bits, which could be used to build a robust quantum computer.

"You could, theoretically and hopefully experimentally, do quantum operations not affected by the environment," says Jarillo-Herrero, who is one of 16 recipients of this year's Packard Fellowships.

The Packard grants are similar to the MacArthur Fellowships — also known as "genius" grants — in that the funding is unrestricted: the recipients may use it as they choose. But while the MacArthur grants are shrouded in secrecy, the Packard fellows are nominated by the presidents of 50 universities that participate in the Packard Fellowship program.

MIT alumni Kevin Janes PhD '05 and Peter Huybers SM '02, PhD '04 also won Packard Fellowships this year.

Provided by Massachusetts Institute of Technology (news : web)

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

New exotic material could revolutionize electronics

Jun 15, 2009

Move over, silicon -- it may be time to give the Valley a new name. Physicists at the Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have confirmed the existence ...

Super-efficient Transistor Material Predicted

May 15, 2009

(PhysOrg.com) -- New work by condensed-matter theorists at the Stanford Institute for Materials and Energy Science at SLAC National Accelerator Laboratory points to a material that could one day be used to ...

Recommended for you

How to test the twin paradox without using a spaceship

1 hour ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...