Nanoscale structures revealed on Diamond's latest beamline

Oct 15, 2009
Inside I07’s experimental hutch, from left to right: Dr Karen Edler, Matthew Wasbrough and Jim Holdaway from Bath University; Dr Tom Arnold, I07 Beamline Scientist, and Dr Chris Nicklin, Principal Beamline Scientist for I07.

On Monday 12th October, a team of scientists from the University of Bath became the first researchers to use the UK’s national synchrotron facility’s latest experimental station (I07). Designed for investigating the structure of surfaces and interfaces under different conditions, Diamond’s 14th beamline will benefit the physical, chemical and life sciences.

The atomic details that I07’s X-rays will reveal will help progress developments in many technologically and industrially relevant areas such as , as well as advance our knowledge into important biological systems to help with, for example, drug delivery techniques.

Dr Karen Edler, the head of the Self-Organised Materials Group within the Department of Chemistry at the University of Bath, and her team used I07 to investigate polymer (large molecule) hydrogel films which have potential to sense particular organic molecules, such as sugars.

To carry out their experiments they varied the type and concentration of surfactant aggregates embedded within the hydrogel films, along with the salt concentration, to alter and control the structure of the films. They then used I07’s intense X-rays to determine the structure of their polymers to help establish which are the most effective for various applications.

One of the areas the Bath group are looking at is biocompatible polymer hydrogels that could be used as biosensors for potential health applications, such as contact lenses to aid diabetics. The group are working on a hydrogel that is made up of a mixture of polymers which contain a specific group of acids which bind to sugars (synthesised in collaboration with Dr Tony James (Bath)). If made out of this special hydrogel, contact lenses could be used to sense and indicate if the wearer has too much glucose in their body. Although this kind of use is a long way off, it is an early indication of how nanoscale studies of surfaces and interfaces could benefit the wider society.

Pleased with their first results, Dr Edler explains why the group have brought their research to I07: “The surface of a solid or the interface between two components is known to be a key factor in determining the structure and thus the properties of the material, as this is where interactions with the external environment occur. We can use I07 to help determine the nanoscale structure of our polymer films to establish the structural ordering that is most suitable for what we want to achieve. We have already used the European Synchrotron Radiation Facility (ESRF) to collect data for this project and we are delighted to bring it to Diamond in the UK. The samples that we use are very fragile and sensitive to air-pressure and relative humidity so it is a great help to only have to transport them a few miles.”

Dr Chris Nicklin, Principal Beamline Scientist on Diamond’s Surface and Interface diffraction beamline, said, “We are delighted to welcome first users to I07. Building a new beamline at Diamond has been an exciting challenge and we are pleased to deliver a fantastic scientific tool within budget and beyond specification. This facility will enable scientists to study in detail the structure of an interface in different environments, such as in liquid, gas or vacuum - useful, for example, in understanding and improving real world processes such as catalytic converters or the role of electrodes in fuel cells. We are able to determine the positions of all of the atoms if they form an ordered layer but can also study larger ‘nanostructures’ or clusters of atoms formed at the interface. Now that we have I07 in operation, we will spend the next six to nine months optimising it to achieve its full potential.”

I07 is part of the second phase of construction at Diamond which is due to be complete in 2012. The further eight Phase II beamlines that are scheduled to be added over the next two years will bring the total of operational beamlines at Diamond to 22, covering a wide range of science; from biology and medicine, to the physical and chemical sciences, through to the environmental and engineering.

Source: Diamond Light Source

Explore further: Celebrating 100 years of crystallography

add to favorites email to friend print save as pdf

Related Stories

First Research Projects Underway at Diamond

Feb 06, 2007

This week marks the dawn of a new era of scientific endeavour as Diamond Light Source, the UK’s brand new synchrotron facility, opens its doors for business and welcomes its very first scientific users.

Scientists develop new high pressure experiment station

Nov 23, 2007

A group of Imperial chemists headed by Professor John Seddon are developing a new piece of equipment to carry out experiments at extremely high-pressures at Diamond Light Source, the UK's new national synchrotron ...

High-tech conservation solutions for old warship

Feb 18, 2008

Scientists from the Mary Rose Trust are using cutting edge synchrotron technology at Diamond Light Source to provide 21st century solutions to enhance the conservation of Henry VIII’s Tudor warship. This ...

SSRL Beamline 13 Achieves First Light

Feb 29, 2008

On February 14, the first light shone into the Stanford Synchrotron Radiation Laboratory's newest beamline. Beamline 13, which has been under construction for the past two years, will allow new types of soft ...

Super multi-use minerals unveiled

Jun 23, 2008

This material forms around a third of the average packet of washing powder and helps refine 99 per cent of the world's petrol. It is also used to clean up nuclear waste. This extremely useful material is a ...

Leading edge facility to strip history bare

Feb 15, 2009

A new facility opening later this year at the Diamond synchrotron is set to revolutionise world heritage science. A new research platform soon to be available at the leading UK science facility, Diamond Light ...

Recommended for you

The fluorescent fingerprint of plastics

4 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

8 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

8 hours ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

10 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

10 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

User comments : 0