Deep-Sea Microbes May Answer Long-Standing Question About Earth's Nitrogen Cycle

Oct 15, 2009
3-D fluorescence in situ hybridization (FISH) image of symbiotic microbes from the deep sea. Credit: Victoria Orphan, Caltech

(PhysOrg.com) -- Scientists have identified an unexpected metabolic ability in a symbiotic community of deep-sea microorganisms. It may help solve a lingering mystery about the world's nitrogen cycle.

The element nitrogen is a critical part of , the building blocks of proteins, and therefore essential to all life. Although nitrogen is plentiful on Earth--it represents 78 percent of the atmosphere, by volume--the element is usually found strongly bonded to itself.

To be biologically useful, a must be released from this coupling and converted to a reduced, or "fixed," state; reduced nitrogen atoms gain an electron, which makes them chemically reactive.

Although lightning, combustion, and other non-biological processes can create reduced nitrogen, far more is generated by nitrogen-fixing microorganisms such as bacteria, in particular, photosynthetic aquatic cyanobacteria. These organisms produce the bulk of the nitrogen available to living things in the ocean.

When researchers add up all known sources of fixed nitrogen--biological and otherwise--in the global nitrogen cycle, and compare it to the sinks (biological uptake for growth and energy), they come up short.

More nitrogen appears to be used than is being made. The "nitrogen budget," in effect, does not balance.

The question has been whether the nitrogen cycle is out of balance, or whether the known inventories of sources and sinks are incomplete, says Victoria Orphan, a geobiologist at Caltech.

Orphan, along with Caltech graduate student Anne Dekas and Caltech postdoctoral researcher Rachel Poretsky, suggest the answer is, at least in part, an incomplete catalogue of the sources of fixed nitrogen.

A paper about their discovery appears in this week's issue of the journal Science.

The team studied samples in methane cold seeps 20 miles off northern California at a depth of 1,800 feet. The area, known as the Eel River Basin, is in a region that supports high levels of natural methane seepage at the sea-floor.

In the laboratory, the researchers examined the methane-rich sediment and the tiny microbial conglomerations that live within.

These spherical cell conglomerates, averaging 500 cells each, consist of two types of anaerobic microorganisms living in a unique symbiotic relationship fueled by methane.

Cores retrieve deep-ocean methane-seep sediment beneath white bacterial mats. Credit: Victoria Orphan, Caltech

The first is a bacterium that reduces the chemical sulfate into sulfide (the process that produces the rotten-egg odor of salt marshes and mud flats) to generate energy.

The second is a methane-oxidizing archaeon; the archaea are a group of non-bacterial single-celled microorganisms.

Working together, these two symbionts are responsible for consuming the majority of the naturally-released methane in the deep sea.

Although these symbiotic associations themselves are not new--the conglomerations were found about a decade ago--the scientists discovered something unexpected: the methane-consuming archaea were actively fixing nitrogen, and sharing it with their bacterial neighbors.

This is the first time nitrogen fixation has been documented in methane-oxidizing archaea, say the scientists.

"The past discovery that archaeal/bacterial consortia were the agents of methane oxidation led to a paradigm shift in our view of carbon cycling at the bottom of the ocean," says Matt Kane, program director in the National Science Foundation's division of environmental biology, which funded the research, along with NSF's division of ocean sciences. "This new finding extends that paradigm shift to the .

"Such discoveries are revolutionizing how we think about microbial physiological ecology and its impact on Earth's biogeochemical cycles."

Although the organisms have a nitrogen-poor diet of gas, they live in an environment that has reduced nitrogen in the form of ammonium and other chemicals, which means they shouldn't need to create their own.

It's possible that they do need to because they are living in a crowded community, say Orphan and colleagues, a tightly packed ball that prevents some organisms from having access to nitrogen.

The organisms have ultra-slow growth rates, doubling once every three to six months. "But they are passing on some nitrogen to their neighbors, which means they are producing more than they need, despite the energy cost of doing so," Dekas says.

"We don't know what benefit the archaeal organisms get from sharing it, but we know they need the bacterial symbiont to stay alive."

Provided by NSF

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

add to favorites email to friend print save as pdf

Related Stories

Partnerships of Deep-Sea Methane Scavengers Revealed

May 12, 2008

The sea floor off the coast of Eureka, California, is home to a diverse assemblage of microbes that scavenge methane from cold deep-sea vents. Researchers at the California Institute of Technology have developed a technique ...

When it comes to nitrogen, the 'fix' is in

Jun 09, 2008

The discovery in the last decade of new suites of microorganisms capable of using various forms of nitrogen -- discoveries that have involved a number of University of Washington researchers -- is one reason ...

Clams Convert Air Into Food

Jan 16, 2008

Only plants can take nitrogen gas from the air and use it to make the protein they need to grow. Or so biologists thought.

Forest canopies help determine natural fertilization rates

May 29, 2008

In this week’s issue of Science, a team of researchers from the United States and Sweden report on a newly identified factor that controls the natural input of new nitrogen into boreal forest ecosystems. Nitrogen is the ...

Researchers explain nitrogen paradox in forests

Jun 18, 2008

Nitrogen is essential to all life on Earth, and the processes by which it cycles through the environment may determine how ecosystems respond to global warming. But certain aspects of the nitrogen cycle in temperate and tropical ...

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

17 hours ago

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jonnyboy
3 / 5 (1) Oct 15, 2009
It is such a rare treat to actually see real science being published. Thank you

More news stories

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

New research on Earth's carbon budget

(Phys.org) —Results from a research project involving scientists from the Desert Research Institute have generated new findings surrounding some of the unknowns of changes in climate and the degree to which ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.