New pattern in our biological clock overturns long-held theory

Oct 08, 2009

(PhysOrg.com) -- University of Michigan mathematicians and their British colleagues say they have identified the signal that the brain sends to the rest of the body to control biological rhythms, a finding that overturns a long-held theory about our internal clock.

Understanding how the human works is an essential step toward correcting like insomnia and jet lag. New insights about the body's central pacemaker might also, someday, advance efforts to treat diseases influenced by the internal clock, including cancer, Alzheimer's disease and mood disorders, said University of Michigan mathematician Daniel Forger.

"Knowing what the signal is will help us learn how to adjust it, in order to help people," said Forger, an associate professor of mathematics and a member of the U-M's Center for Computational Medicine and Bioinformatics. "We have cracked the code, and the information could have a tremendous impact on all sorts of diseases that are affected by the clock."

The body's main time-keeper resides in a region of the central brain called the suprachiasmatic nuclei, or SCN. For decades, researchers have believed that it is the rate at which SCN fire electrical pulses---fast during the day and slow at night---that controls time-keeping throughout the body.

Imagine a metronome in the brain that ticks quickly throughout the day, then slows its pace at night. The rest of the body hears the ticking and adjusts its daily rhythms, also known as , accordingly.

That's the idea that has prevailed for more than two decades. But new evidence compiled by Forger and his colleagues shows that "the old model is, frankly, wrong," Forger said.

The true signaling mechanism is very different: The timing signal sent from the SCN is encoded in a complex firing pattern that had previously been overlooked, the researchers concluded. Forger and U-M graduate student Casey Diekman, along with Dr. Mino Belle and Hugh Piggins of the University of Manchester in England, report their findings in the Oct. 9 edition of Science.

To test predictions made by Forger and Diekman's mathematical model, the British scientists collected data on firing patterns from more than 400 mouse SCN cells. The U-M scientists then plugged the experimental results into their model and found that "the experimental data were almost exactly what the model had predicted," Forger said.

Though the experiments were done with mice, Forger said it's likely that the same mechanism is at work in humans, since timekeeping systems are similar in all mammals.

The SCN contains both clock cells (which express a gene call per1) and non-clock cells. For years, circadian-biology researchers have been recording electrical signals from a mix of both types of cells. That led to a misleading picture of the clock's inner workings.

But Forger's British colleagues were able to separate clock cells from non-clock cells by zeroing in on the ones that expressed the per1 gene. Then they recorded electrical signals produced exclusively by those clock cells. The pattern that emerged bolstered the audacious new theory.

"This is a perfect example of how a mathematical model can make predictions that are completely at odds with the prevailing views yet, upon further experimentation, turn out to be dead-on," Forger said.

The researchers found that during the day, SCN cells expressing per1 sustain an electrically excited state but do not fire. They fire for a brief period around dusk, then remain quiet throughout the night before releasing another burst of activity around dawn. This firing pattern is the signal, or code, the brain sends to the rest of the body so it can keep time.

"The old theory was that the cells in the SCN which contain the clock are firing fast during the day but slow at night. But now we've shown that the cells that actually contain the clock mechanism are silent during the day, when everybody thought they were firing fast," Diekman said.

Piggins said the findings "force us to completely reassess what we thought we knew about electrical activity in the brain's circadian clock." In addition, the results demonstrate the importance of interdisciplinary collaborative research, he said.

"This work also raises important questions about whether the brain acts in an analog or a digital way," Belle said.

Provided by University of Michigan (news : web)

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

add to favorites email to friend print save as pdf

Related Stories

A Surprise about Our Body Clock

Jul 05, 2006

The first gene known to control the internal clock of humans and other mammals works much differently than previously believed, according to a study by Utah and Michigan researchers.

Mice have biological clock for smell

Dec 14, 2006

Biologists at Washington University in St. Louis have discovered a large biological clock in the smelling center of mice brains and have revealed that the sense of smell for mice is stronger at night, peaking ...

Protein shown to rally biological clock

Nov 29, 2006

A biologist at Washington University in St. Louis and his collaborators have identified the factor in mammalian brain cells that keeps cells in synchrony so that functions like the wake-sleep cycle, hormone secretion and ...

Mouse vision has a rhythm all its own

Aug 23, 2007

In the eyes of mammals, visual information is processed on a daily schedule set within the eyes themselves—not one dictated by the brain, according to a new report in the August 24 issue of the journal Cell, a publication of Cel ...

Recommended for you

New pain relief targets discovered

9 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

9 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

12 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

jsovine
not rated yet Oct 08, 2009
Very interesting, I wonder if this has implications for determining how the brain perceives time.
Fakeer
not rated yet Oct 09, 2009
The mathematical model not elaborated here is apparently based on a simulation of a cluster of electrical circuits which individually emulate one SCN neuron. This silenced the neurons that were out of phase with the 24hr clock.
superhuman
5 / 5 (1) Oct 11, 2009
Interesting work, but there is only one way to prove this new model is right - modify the firing pattern and see if it changes mice activity.

For example add 2 extra bursts, one in midday and one in midnight, if it induces mouse to sleep twice a day it will be a definite proof.
Ricochet
5 / 5 (1) Oct 12, 2009
I can imagine the implications of this. If a simple stimulus could cause a burst of per1 that causes the body to change from awake to sleep state, sleep medicines would be drastically different. Also, it raises the question of how it relates to comas. Could a coma be simply caused by the lack of activity in these cells?

More news stories

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...