New coastland map could help strengthen sea defenses

Oct 06, 2009

The 'Coastland Map' produced by scientists from Durham University and published in the Journal GSA Today, charts the post Ice-Age tilt of the UK and Ireland and current relative sea-level changes. According to the map, the sinking effect in the south could add between 10 and 33 per cent to the projected sea-level rises caused by global warming over the next century.

The projections are less than previous estimations for subsidence and could help local authorities to save money on sea and flood defences through the targeting of resources to areas where sea level rises will be greatest. The data and model could also be used in planning for the managed retreat of threatened .

Since the end of the last Ice Age 20,000 years ago, land and sea-levels around the UK coastline have changed in response to the retreat of the ice sheets. As the ice melted, the release of this enormous weight resulted in the landmass slowly tilting back up in the north or down in the south, a process called isostatic adjustment.

These rises and falls come on top of any changes in sea-level caused by global warming. In Scotland, the rise of much of the coastline will offset some of the predicted rises in sea-level due to .

The Durham team, led by Professor Ian Shennan and funded by the Natural Environment Research Council, looked at the relationship of peat, sand and clay sediments that have been uplifted above sea-level or are now submerged below sea level. The team radio-carbon dated samples to see how sediments formed and to calculate changes in sea-levels over thousands of years.

Eighty sites were studied around the UK and Ireland coasts. By coring and examining sediments in drainage ditches and road excavations, the team found evidence of land rises and falls from the relative elevation of sediments. These results were assessed along with previous studies of sites including the Thames, Humber, Tyne and Tees estuaries, southern , Ireland, Wales and Scotland.

The team used the data to test models of the earth's response to ice load and this modelling technique can now be applied to other ice-affected countries with maritime boundaries, and can help predict the future of coastal areas around the world.

Prof Shennan said: "The rate of uplift north of the River Tyne to Scotland increases because the ice sheets there were thicker and heavier. The action of the Ice Age on our landmass has been like squeezing a sponge which eventually regains its shape. The earth's crust has reacted over thousands of years and is continuing to react.

"Subsidence and rising sea levels will have implications for people and habitats, and will require action to manage resorts, industrial sites, ports, beaches, salt marshes and wetlands, wildlife and bird migrations."

The new map shows how the UK and Ireland are responding to the ice sheet compression of the earth's core and the current rate of land tilt across the UK. In Northumberland, researchers found sediments from 7,000 years ago five metres below, and others from 4,000 years ago at 1 metre above the present sea level. This indicates that the sea level rose above present levels from around 7,500 years ago to 4,500 years ago, and then dropped and is continuing to fall. Sea-levels in most of Scotland peaked even higher about 4,500 years ago and have been falling ever since because the land has risen.

Sea levels 7,000 years ago were some 15 metres below the present levels in the Fenland in eastern England, and the levels are still rising. The team predicts that levels will continue to rise as the land falls, at a rate of 0.4 to 0.7 millimetres a year.

rise brings in sediment which is soft and consolidates in coastal areas. Sea defences built on soft sediments can suffer additional subsidence due to compaction of the sediments. The Fenland is particularly affected by sediment compaction. The Thames, Bristol Channel and Kent coast are also affected as the sediment in rivers, estuaries and flood plains settles and compresses.

The three main areas of land subsidence in the UK and Ireland reflect the advance and retreat of the Scandinavian, and the British and Irish Ice Sheets.

Durham's new map and model also takes into account Newton's law of gravitational attraction and 'the Geoid effect'. Melting ice has affected the relationship between the ice, sea and land, and the mass inside the earth's mantle. These changes have produced a gravitational effect on the surface of the water in the planet's oceans.

Prof Shennan said: "When a huge mass of ice melts, the land readjusts over time but there's also a response in the earth's mantle and this affects the shape of the surface of the earth's oceans. Changes in our oceans and land uplift and subsidence will continue to have a significant effect on our coastlines this century."

More information:

Areas of falling land and rising sea levels:

1. Somerset, Cornwall and Devon
2. Dorset, Hampshire and Sussex
3. Kent and Essex
4. Suffolk and Norfolk
5. The Wash
6. Humberside and North Lincolnshire
7. Shetland Islands.
8. South Wales
9. Southern Ireland
10. Western Ireland

Areas with little land-level change

1. North Yorkshire; Cleveland
2. Mid Wales

Areas of rising land levels include:

1. Tyne and Wear
2. Northumbrian coast, Berwickshire, East Lothian,
3. The Firth of Forth and the Moray Forth
4. Fife, Aberdeenshire, Caithness
5. Minch and the Western Isles
6. Argyll, Ayrshire and the Solway Firth
7. Northern Irish coast
8. Isle of Man
9. Cumbria, Lancashire and Merseyside
10. North Wales

Source: Durham University (news : web)

Explore further: A 5.3-million-year record of sea level and temperature

add to favorites email to friend print save as pdf

Related Stories

Ice Age lesson predicts a faster rise in sea level

Aug 31, 2008

If the lessons being learned by scientists about the demise of the last great North American ice sheet are correct, estimates of global sea level rise from a melting Greenland ice sheet may be seriously underestimated.

Sea level rise could be worse than anticipated

Feb 05, 2009

If global warming some day causes the West Antarctic Ice Sheet to collapse, as many experts believe it could, the resulting sea level rise in much of the United States and other parts of the world would be ...

Recommended for you

Image: Grand Canyon geology lessons on view

3 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

3 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

First radar vision for Copernicus

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

Image: Grand Canyon geology lessons on view

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

Book offers simplified guide to shale gas extraction

The new book, "Science Beneath the Surface: A Very Short Guide to the Marcellus Shale," attempts to offer a reader-friendly, unbiased, scientific guide needed to make well-informed decisions regarding energy ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...