High-sensitivity bone marrow aspiration technology enhances leukemia cell detection

Oct 06, 2009

Scientists have created a viable technology to improve the detection of leukemia cells in bone marrow.

Superconducting Device (SQUID) enhanced the ability to rapidly quantify the amount of nanoparticle bound tumor in a sample at least 10 fold, and increased sensitivity of minimal residual disease measurements. Results of this proof-of-concept study are published in Cancer Research, a journal of the American Association for Cancer Research.

"This promises to significantly enhance the detection for residual disease in leukemia and other cancers," said lead scientist Richard S. Larson, M.D., Ph.D., vice president for translation research at the University of New Mexico Health Science Center. "Coupling nanotechnology can be employed in common techniques to enhance its utility."

These findings are a result of a collaborative research effort between Senior Scientific, LLC, and the University of New Mexico. The study was funded by a small business innovation grant awarded by the National Cancer Institute.

Previous studies have indicated that the magnetic needle can collect approximately 80 percent of in a bone marrow sample in a matter of minutes, according to Edward R. Flynn, Ph.D., president and CEO of Senior Scientific, LLC.

The scientists developed this magnetic marrow biopsy needle in an effort to target tumor cells with and then preferentially extract the with a magnetic needle. They used anti-CD34 antibody loaded magnetic nanoparticles to detect CD34+ cells as an indicator of leukemia. To quantify the cells recovered, they coupled this nanoparticle-mediated fishing for leukemic cells with SQUID.

SQUID enhanced the sensitivity of measuring minimal residual disease over standard pathology methods for patients undergoing chemotherapy.

"This result will determine more precisely the effect of the chemotherapy and will help to ascertain proper dosage or termination of treatment for patients," said Flynn.

Furthermore, Larson said that SQUID will work well with current technologies to improve the detection of leukemia cells in the . Chi Van Dang, M.D., Ph.D., professor of medicine, cell biology, oncology and pathology, and vice dean for research at the Johns Hopkins University School of Medicine, believes this approach is quite different from the current standard. He suggested that the sensitivity compared to polymerase chain reaction still needs to be determined.

"In the case of leukemias without clear genetic markers, the magnetic needle could be useful," said Dang, who was not associated with this study, but is an editorial board member for Cancer Research. "It is possible that this technology could be used to detect cancer stem cells in general, if the proper antibodies with appropriate specificity are available."

Senior Scientific, LLC is currently participating in follow-up studies to increase the efficiency of the magnetic needle further through advanced magnet configurations and theoretical calculations.

Source: American Association for Cancer Research (news : web)

Explore further: Six percent of colorectal cancer found to be interval tumors

add to favorites email to friend print save as pdf

Related Stories

Stem cells make bone marrow cancer resistant to treatment

Jan 11, 2008

Scientists at the Johns Hopkins Kimmel Cancer Center say they have evidence that cancer stem cells for multiple myeloma share many properties with normal stem cells and have multiple ways of resisting chemotherapy and other ...

Stem cells and leukemia battle for marrow microenvironment

Dec 18, 2008

Learning how leukemia takes over privileged "niches" within the bone marrow is helping researchers develop treatment strategies that could protect healthy blood-forming stem cells and improve the outcomes of bone marrow transplantation ...

Using magnetic nanoparticles to combat cancer

Jul 16, 2008

Scientists at Georgia Tech have developed a potential new treatment against cancer that attaches magnetic nanoparticles to cancer cells, allowing them to be captured and carried out of the body. The treatment, ...

Leukemic cells find safe haven in bone marrow

Mar 22, 2007

The cancer drug asparaginase fails to help cure some children with acute lymphoblastic leukemia (ALL) because molecules released by certain cells in the bone marrow counteract the effect of that drug, according to investigators ...

Recommended for you

Physicians target the genes of lung, colon cancers

15 hours ago

(Medical Xpress)—University of Florida physicians and researchers are collaborating to map the genes of different types of cancer, and then deliver medication to attack cancer at its source.

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...