Scientists pinpoint breast cancer 'guard' gene

Oct 06, 2009

(PhysOrg.com) -- Scientists are close to discovering how normal breast cells become cancerous, according to research by Cambridge scientists published today.

Dr Paul Edwards at the Department of Pathology has identified a gene, NRG1 (neuregulin-1), which is damaged in over half of all breast cancers and fails to guard against normal cells becoming .

Finding the involved in breast cancer development is essential to classify different types of the disease so that the most effective treatment is given for the specific type of breast cancer.

Dr Edwards said, "I believe NRG1 could be the most important tumour suppressor gene discovery in the last 20 years as it gives us vital information about a new mechanism that causes breast cancer. It could also be relevant to a wide range of other common cancers and could lead to new and effective treatments."

Arlene Wilkie, Director of Research and Policy, Breast Cancer Campaign, which funded the study with Cancer Research UK said: "Knowing the identity of this gene will lead to far more detailed studies of how it works and how it is involved in breast cancer development. This research is a major step forward in understanding the genetics of cancer and could open up a host of new strategies to improve diagnosis and treatment.

"In the UK 12,000 women die from this disease every year, so it is vital we understand how develops in order to stop it happening."

Lesley Walker, Cancer Research UK's director of cancer information, said: "This discovery is an important step forward in understanding a disease that more than 45,500 women are diagnosed with in the UK each year. More research is now needed to understand how this 'guard' gene is silenced and how exactly this influences the development of cancer. It might then be possible to develop ways to bypass the gene or target treatments to the defect."

The study was published in the journal Oncogene.

Provided by University of Cambridge (news : web)

Explore further: Assortativity signatures of transcription factor networks contribute to robustness

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Mutation disables innate immune system

6 hours ago

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

23 hours ago

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 0