Breaking Down the Barrier for Smaller, Faster Electronic Devices

Oct 05, 2009 by Kendra Snyder
Cross-sectional transmission electron microscopy image of a barrier layer on a low-k dielectric that was formed by annealing a Cu-Mn alloy for 1 hour at 420C.

(PhysOrg.com) -- A team of international researchers is the first to uncover the chemical composition and structure of a microelectronics element that is vital to producing ever smaller - and, thus, cheaper and faster - devices.

"The number of electronic devices that can be placed within an integrated circuit has followed almost perfectly an exponential increase in the past 40 years," said James Ablett, a researcher at Synchrotron SOLEIL in France. "However, to maintain this rate, a major change in the fabrication process is required."

One of these changes involves the production of "diffusion barriers," which are needed to separate the copper metallic lines that connect the various components in an electronic device from the silicon-based insulating material. Silicon and copper are highly reactive and the mixture of the two will ultimately lead to circuit failure. However, current fabrication processes are unable to deliver diffusion barrier films that are conformal (have the same thickness across the entire interface) and thin enough - on the order of one nanometer - to support the next generation of electronic devices.

That's why Ablett, along with researchers from the NSLS, the National Institute of Standards and Technology (NIST), IMEC, and Intel, are studying one potential fabrication method that uses copper-manganese alloys. In these systems, the atoms diffuse out of the alloy film upon annealing and form a thin and conformal barrier layer at the silicon interface before copper diffusion can begin.

At NSLS beamlines X27A and X23A2, the researchers used grazing incidence x-ray fluorescence spectroscopy to study these self-forming barrier layers. They grew the diffusion barrier on two different materials: thermal (SiO2) and one with a lower dielectric constant.

The researchers discovered that the diffusion layer is principally made up of two different components (MnSiO3 and MnO) and is relatively easy to form on the low-k material but substantially more difficult to form on SiO2. These results are promising as low-k dielectrics, which have a low capacitance - ability to hold charge - than SiO2, will eventually be used in future microelectronic technology, enabling faster and more efficient devices. This is because insulators with a smaller dielectric constant can charge faster, allowing electrical signals to propagate faster through the circuit.

The researchers also discovered that the low-k material forms an effective diffusion barrier because its porosity helps it absorb moisture that efficiently produces the barrier's oxide layers.

Their results were published in the January 26, 2009 edition of Applied Physics Letters.

"Not only have these measurements allowed us to study the effect of the self-forming diffusion barrier process on both SiO2 and low-k dielectrics, as a function of alloy thickness, anneal temperature, and time, we also have been able to identify the major phases in the diffusion barrier layer, which will allow us to better understand how these barriers behave and to assess their ultimate feasibility for future integration into wide-scale semiconductor manufacturing," Ablett said.

More information: J.M. Ablett, J.C. Woicik, Zs. Tokei, S. List, and E. Dimasi, "Phase Identification of Self-Forming Cu-Mn Based Diffusion Barriers on p-SiOC :H and SiO2 Dielectrics Using X-Ray Absorption Fine Structure," Applied Physics Letters, 94, 042112 (2009).

Provided by National Synchrotron Light Source

Explore further: Can perovskites and silicon team up to boost industrial solar cell efficiencies?

add to favorites email to friend print save as pdf

Related Stories

NEC Develops New Full Low-k Cu-interconnect Structure

Dec 13, 2007

NEC have developed a new Silica-Carbon Composite (SCC) film capable of blocking Cu-atom diffusion into the dielectric films of LSI interconnects. Use of the SCC film establishes an ultimate full-low-k (FLK) Cu interconnect ...

New research shows why metal alloys degrade

Sep 24, 2008

(PhysOrg.com) -- Metal alloys can fail unexpectedly in a wide range of applications -- from jet engines to satellites to cell phones—and new research from the University of Michigan helps to explain why.

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.