Researchers use computational models to study fear

Sep 30, 2009

The brain is a complex system made of billions of neurons and thousands of connections that relate to every human feeling, including one of the strongest emotions, fear. Most neurological fear studies have been rooted in fear-conditioning experiments. Now, University of Missouri researchers have started using computational models of the brain, making it easier to study the brain's connections. Guoshi Li, an electrical and computer engineering doctoral student, has discovered new evidence on how the brain reacts to fear, including important findings that could help victims of post-traumatic stress disorder (PTSD).

"Computational models make it much easier to study the brain because they can effectively integrate different types of information related to a problem into a computational framework and analyze possible neural mechanisms from a systems perspective. We simulate activity and test a variety of "what if" scenarios without having to use human subjects in a rapid and inexpensive way," Li said.

From previous experiments, scientists have found that can subside when overcome with fear extinction memory, but it is not permanently lost. Fear extinction is a process in which a conditioned response to a stimulant that produces fear gradually diminishes over time as subjects, such as rats in auditory fear experiments, learn to disassociate a response from a stimulus. One theory has concluded that fear extinction memory deletes fear memory, and another concluded that fear memory is not lost, but is inhibited by extinction memory as fear can recover with the passage of time after extinction.

"Fear extinction memory is not well understood, and our can capture the neuron response well in rat during auditory fear conditioning with a mixture of mathematics and biophysical data," said Li. "Our main contribution is that our model predicts that fear memory is only partially erased by extinction, and inhibition is necessary for a complete extinction, which is a reconciliation of the erasure and inhibition theories. Furthermore, our model shows that the inhibitory connection from interneurons to pyramidal cells serve as an important site for the storage of extinction memory."

For PTSD victims, the fear circuit is disrupted and they cannot retrieve the fear extinction memory. However, the fear extinction memory exists, so the dominates every time victims get a fear cue. Li and his collaborators are targeting the inhibitory connection in the brain that makes it possible to retrieve the extinction memory. Li hopes that his research can contribute to new drugs that can help PTSD victims.

"Treatment for PTSD patients depends on which connection stores the fear extinction memory and which circuit misfires," Li said. "With our model, we can figure out what specific connections store fear/extinction memory and how such connections are disrupted in the pathology of PTSD, which may lead to the suggestions of new drugs to treat the disease."

The study has been published in the Journal of Neurophysiology and Psychiatric Annals.

Source: University of Missouri-Columbia (news : web)

Explore further: Slow walking speed and memory complaints can predict dementia (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

Research identifies brain cells related to fear

Jul 11, 2008

The National Institute of Mental Health estimates that in any given year, about 40 million adults (18 or older) will suffer from some form of anxiety disorder, including debilitating conditions such as phobias, panic dis ...

MIT IDs mechanism behind fear

Jul 15, 2007

Researchers from MIT's Picower Institute for Learning and Memory have uncovered a molecular mechanism that governs the formation of fears stemming from traumatic events. The work could lead to the first drug to treat the ...

Study charts origins of fear memory

Sep 16, 2005

A team of researchers led by the University of Toronto has charted how and where a painful event becomes permanently etched in the brain. The researchers said their discovery has treatment implications for pain-related emotional ...

Very young found to process fear memories in unique way

Feb 06, 2008

Very young brains process memories of fear differently than more mature ones, new research indicates. The findings appear in the Feb. 6 issue of The Journal of Neuroscience. The work significantly advances scientific unders ...

Recommended for you

Faster fish thanks to nMLF neurons

17 hours ago

As we walk along a street, we can stroll at a leisurely pace, walk quickly, or run. The various leg movements needed to do this are controlled by special neuron bundles in the spinal cord. It is not quite ...

User comments : 0