Study shows more corn for biofuels would hurt water

Sep 28, 2009 by Brian Wallheimer

(PhysOrg.com) -- More of the fertilizers and pesticides used to grow corn would find their way into nearby water sources if ethanol demands lead to planting more acres in corn, according to a Purdue University study.

The study of Indiana water sources found that those near fields that practice continuous-corn rotations had higher levels of nitrogen, fungicides and phosphorous than corn-soybean rotations. Results of the study by Indrajeet Chaubey, an associate professor of agricultural and biological engineering, and Bernard Engel, a professor and head of agricultural and biological engineering, were published in the early online version of the Journal of Environmental Engineering.

"When you move from corn-soybean rotations to continuous corn, the sediment losses will be much greater," Chaubey said. "Increased sediment losses allow more fungicide and phosphorous to get into the water because they move with sediment."

Nitrogen and fungicides are more heavily used in corn crops than soybeans, increasing the amounts found in the soil of continuous-corn fields. Sediment losses become more prevalent because tilling is often required in continuous-corn fields, whereas corn-soybean rotations can more easily be no-till fields, Engel said.

"The common practice is there is a lot of tillage to put corn back on top of corn," Engel said. "Any time we see changes in the landscape, there is a potential to see changes in water quality."

Chaubey said there was no significant change in the amount of atrazine detected in water near fields that changed to continuous-corn rotations. The commonly used pesticide sticks to plant material and degrades in sunlight, keeping it from reaching water through runoff or sediment.

U.S. Department of data has shown that corn acreage has increased with the demand for ethanol, with 93 million acres in 2007, an increase of 12.1 million acres that year.

"As we look forward here, if corn stover is going to be a preferred bio-feedstock, we would see more acreage being planted," Engel said. "We need to know how that will affect water quality."

Source: Purdue University (news : web)

Explore further: Dead floppy drive: Kenya recycles global e-waste

add to favorites email to friend print save as pdf

Related Stories

Study of agricultural watersheds and carbon losses

Jun 19, 2009

Dissolved organic carbon (DOC) losses from tile drains are an underquantified portion of the terrestrial carbon cycle. This is particularly important in the eastern corn belt where tile drainage dominates the agricultural ...

Preventing soil erosion in continuous corn

Jan 12, 2009

With recent increase in the cost of energy and subsequent explorations into alternative energy sources, the increased harvest of corn residue for cellulosic ethanol production is likely in the future. This may be especially ...

Herbicide-tolerant crops can improve water quality

Apr 22, 2008

The residual herbicides commonly used in the production of corn and soybean are frequently detected in rivers, streams, and reservoirs at concentrations that exceed drinking water standards in areas where these crops are ...

Recommended for you

Dead floppy drive: Kenya recycles global e-waste

8 hours ago

In an industrial area outside Kenya's capital city, workers in hard hats and white masks take shiny new power drills to computer parts. This assembly line is not assembling, though. It is dismantling some ...

New paper calls for more carbon capture and storage research

13 hours ago

Federal efforts to reduce greenhouse gas emissions must involve increased investment in research and development of carbon capture and storage technologies, according to a new paper published by the University of Wyoming's ...

Coal gas boom in China holds climate change risks

18 hours ago

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

User comments : 0