Pushing the cold frontier in an orderly fashion

Sep 28, 2009
In a cloud of cold gases (left) entropy can be reduced (right) by focusing a laser that compresses one component (blue) without affecting the other (red). Rather than heating up the blue component, some of the disorder in the squeezed gas moves to the surrounding gas cloud. Credit: J. Catani et al., Phys. Rev. Lett. 103, 140401 (2009)

Physicists are continually reaching new lows as they reduce the temperatures of samples in their laboratories. But even nano-kelvins are not low enough to overcome the entropy (a measure of the disorder in a system) that stands between them and the discovery of exotic states of ultra-cold matter.

Now physicists at two Italian universities have developed a technique that siphons out of a collection of atoms in much the same way that a kitchen removes heat from the food stored inside.

The new method is described in Physical Review Letters and highlighted in the September 28 issue of Physics.

The system that Jacopo Catani (University of Florence) and colleagues assembled begins with a cloud of and atoms held in a magnetic trap. They selected a laser with a wavelength of light that interacted with the potassium atoms, but had little effect on the rubidium atoms. They then compressed the potassium atom cloud by focusing the laser to a point in the trap.

Compressing a gas usually increases its temperature, but the surrounding rubidium kept things in check, allowing the researchers to hold the temperature roughly constant as entropy was shifted from the potassium to the rubidium atoms.

The novel technique should work with other combinations of atoms as well, offering researchers a new tool to aid them in their pursuit of physics at ultra-low temperatures and entropies.

More information: Entropy Exchange in a Mixture of , Phys. Rev. Lett. 103, 140401 (2009), DOI: 10.1103/PhysRevLett.103.140401

Source: American Physical Society

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Scientists work to squeeze atoms

Jan 04, 2006

Like bakers measuring the exact same amount of flour every time they made bread, physicists at The University of Texas at Austin have used a laser trap to consistently capture and measure the same small number of atoms.

Cross-Dressing Rubidium May Reveal Clues for Exotic Computing

Feb 25, 2009

(PhysOrg.com) -- Neutral atoms--having no net electric charge--usually don't act very dramatically around a magnetic field. But by “dressing them up” with light, researchers at the Joint Quantum Institute, a collaborative ...

New way found to cool atoms and molecules

Aug 09, 2005

Physicists at The University of Texas say they've found a new technique for cooling atoms and molecules, allowing more effective quantum physics studies.

Atom 'noise' may help design quantum computers

Mar 02, 2007

As if building a computer out of rubidium atoms and laser beams weren't difficult enough, scientists sometimes have to work as if blindfolded: The quirks of quantum physics can cause correlations between the ...

Recommended for you

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...