How we know a dog is a dog: Concept acquisition in the human brain

Sep 23, 2009

A new study explores how our brains synthesize concepts that allow us to organize and comprehend the world. The research, published by Cell Press in the September 24th issue of the journal Neuron, uses behavioral and neuroimaging techniques to track how conceptual knowledge emerges in the human brain and guides decision making.

The ability to use prior knowledge when dealing with new situations is a defining characteristic of human intelligence. This is made possible through the use of concepts, which are formed by abstracting away the common essence from multiple distinct but related entities. "Although a Poodle and a Golden Retriever look very different from each other, we can easily appreciate their similar attributes because they can be recognized as instances of a particular concept, in this case a dog," explains lead study author, Dr. Dharshan Kumaran from the Wellcome Trust Centre for Neuroimaging at University College London.

While there is little doubt that humans form and use concepts all the time, not much is known about how conceptual knowledge is created in the brain or how it guides us to make efficient choices. It has long been suggested that the , a structure critical for , plays a critical role in the acquisition of conceptual knowledge. However, thus far, there has been little concrete evidence to support this claim. Dr. Kumaran and colleagues designed an experimental paradigm that would allow them to track the emergence and application of conceptual knowledge.

Participants played a game in which they had the opportunity to win money by correctly predicting whether it would be sunny or rainy based on the appearance of the night sky, denoted by patterns on a computer screen. Early on in the experiment, participants simply memorized the outcome associated with each pattern in isolation. However, they quickly noticed that groups of patterns were conceptually related, much in the same way as Poodles and Golden Retrievers. By structuring the problem in this fashion, participants were able to solve the task, and even successfully apply their knowledge to a different setting where the concepts were similar but the patterns themselves new.

By using parallel behavioral and neural measures, the researchers found that a functionally coupled circuit involving the hippocampus and ventromedial prefrontal cortex underpinned the emergence of conceptual knowledge. Interestingly, however, it was the hippocampus alone that predicted which participants would be able to successfully apply the concepts they had learned to a visually novel setting. "What this suggests is that perhaps the hippocampus creates and stores these concepts, and passes this information to the prefrontal cortex where it can be put to use, for example in making choices where financial reward is at stake," explains Dr. Kumaran.

Taken together, the results highlight the role of the hippocampus in acquiring new concepts, perhaps though its unique networking capacities which allow multiple memories to be related to one another. "Our study offers neurobiological insights into the remarkable capacity of humans to discover the conceptual structure of their visual experiences, and reveals how so-called "memory" regions like the hippocampus team up with "decision modules" in the prefrontal lobe to put this information to use," concludes Dr. Kumaran.

Source: Cell Press (news : web)

Explore further: Study links enzyme to autistic behaviors

add to favorites email to friend print save as pdf

Related Stories

Tales of the unexpected: how the brain detects novelty

Nov 28, 2006

When you sit down to watch a DVD of your favourite film, the chances are that you are able to predict the exact sequence of events that is about to unfold. Without our memories we would not only be unable to remember our ...

Patients with amnesia 'live in the present'

Jan 16, 2007

Scientists at the Wellcome Trust Centre for Neuroimaging, University College London, have shown that people with damage to the hippocampus, the area of the brain that plays a crucial role in learning and memory, not only ...

Recommended for you

Brain's dynamic duel underlies win-win choices

32 minutes ago

People choosing between two or more equally positive outcomes experience paradoxical feelings of pleasure and anxiety, feelings associated with activity in different regions of the brain, according to research ...

ALS disease is rare, 1st US count finds

48 minutes ago

(AP)—The U.S. government has issued its first national estimate for amyotrophic lateral sclerosis, or ALS, confirming the devastating disease is rare.

Study links enzyme to autistic behaviors

Jul 23, 2014

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

gwrede
not rated yet Sep 24, 2009
"The ability to use prior knowledge when dealing with new situations is a defining characteristic of human intelligence."

Duh!! Aren't we unique!

I'd formulate that as "The ability to use prior knowledge when dealing with new situations is a defining characteristic of [i]any adaptive system[/i]".

Sometimes these articles contain so human-centric phrasings that i feel sick to my stomach. I only hope scientists aren't as naive and arrogant.