New study finds way to stop excessive bone growth following trauma or surgery

Sep 23, 2009

A recent United States Army study found that excessive bone growth, also known as heterotopic ossificiation (HO), affects up to 70 percent of soldiers who are severely wounded during combat. A much smaller percentage of the civilian population also suffers from HO following trauma or invasive surgery. The excessive bone forms within muscles and other tissues causing severe pain, reduced mobility and even local paralysis if untreated.

A new study by Thomas Jefferson University researchers found a way to prevent HO in animal models by shutting the process off in its early stages. The study, reported in September's Journal of Orthopaedic Research, is expected to lead to clinical trials and may hopefully provide a new, effective and safe treatment for HO.

"This is a major breakthrough in HO research," said Primary Investigator Maurizio Pacifici, Ph.D, director of Orthopedic Research at Jefferson Medical College of Thomas Jefferson University. "We are able to largely prevent formation and progression of HO lesions. We presented our initial results at a recent U.S. Army Extremity War Injuries Symposium in Washington D.C. and they were very well-received and have elicited great hope on the part of military physicians to finally have a way to stop HO in troops wounded in war zones."

In the ongoing study sponsored by the U.S. Army, Jefferson scientists were able to prevent HO by disrupting a series of cellular changes that are needed to produce HO. Following a trauma or , the condition begins when progenitor and stem cells are recruited to the injured site and give rise to that then turns to bone. This multi-step process is regulated by several factors. One of these factors is a protein in the nucleus of the progenitor cells that is called the retinoid alpha receptor. This receptor must be turned off before the progenitor cells can form cartilage tissue. The Jefferson scientists, using a pharmacological agent, an alpha agonist, kept the receptors active, stifling the initiation of the disease in its tracks.

"The agonist we used in this case is an experimental drug that is not on the market yet, but is being tested in Phase II human trials for another disease. We tested whether the drug could work to prevent HO, thereby looking for another application for the drug," said Pacifici.

HO treatments for the general population exist now, but are not always effective and can produce side effects. Low-dose irradiation, postoperative nonsteroidal anti-inflammatory drugs or a combination of both are the current routine treatments for HO. When these treatments fail and patients require surgical removal of HO lesions, some complications can arise, including instigation of a new round of HO formation. These treatments are currently not used in wounded soldiers because they could have additional
complications. For example, low-dose irradiation could reduce the healing capacity of tissues. Since the alpha agonist should not interfere with these processes, it could prove to be a suitable treatment without the significant side effects.

Because current HO treatments cannot be used, HO remains a potentially serious problem due to the high incidence among military personnel. Also without treatment, HO can progress and spread becoming much more serious over time. Hopefully, if
clinical trials are done and prove successful this treatment could be used as a cure for not only HO but for other HO-related diseases including Fibrodysplasia Ossificans Progressive (FOP), an inheritable and severe form of HO.

"We aren't there yet but we are definitely excited," concluded Pacifici.

Source: Thomas Jefferson University (news : web)

Explore further: Human brain has coping mechanism for dehydration

add to favorites email to friend print save as pdf

Related Stories

A DNA-based vaccine shows promise against avian flu

Oct 01, 2008

(PhysOrg.com) -- Though it has fallen from the headlines, a global pandemic caused by bird flu still has the United States’ Centers for Disease Control and Prevention on high alert. Yet, to date, the only vaccines that ...

Engineer creating more sensitive, safer landmine detectors

Oct 30, 2008

Long after a conflict, landmines remain buried underground unless someone can locate and detonate them. According to the United Nations (UN), there are more than 100 million landmines buried in 68 countries around the world. ...

Recommended for you

Diet affects men's and women's gut microbes differently

8 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

9 hours ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

11 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments : 0