Balance organs affect brain blood flow

Sep 23, 2009

The organs of the inner ear have a direct effect on brain blood flow, independent of blood pressure and CO2 levels in the blood. Researchers writing in the open access journal BMC Neuroscience used a series of human centrifuge experiments to investigate the effects of stimulation of the otoliths and semi-circular canals on cerebrovascular response.

Dr. Jorge Serrador, from Harvard Medical School, worked with a team of researchers, including NASA scientists, to carry out the tests. He said, "While a role for the vestibular system in the autonomic response to position has been documented, this is the first study to demonstrate a direct effect of otolith stimulation on ".

The researchers stimulated the vestibular organs of 25 healthy people by tilting them forwards and backwards, and by translation on a centrifuge. Changes in cerebral flow velocity were dependent on the frequency of vestibular stimulation and were in opposition to changes in and not directly related to changes in end tidal CO2.

Speaking about the implications of these results, Serrador said, "Standing up places the head above the heart and thus makes it harder to provide blood flow to the brain. Having a connection between the otoliths, which tell us that we are standing, and the cerebrovasculature may be part of the adaption that allows us to maintain our brain blood flow when upright. This connection might explain the reduced cerebral blood flow in some people. For example, aging is associated with vestibular loss that might contribute to reductions in global cerebral blood flow. Similarly, patients with orthostatic intolerance could have underlying vestibular impairment that exacerbates cerebral hypoperfusion when upright. The knowledge gained from this study might lead to new treatment options for these conditions".

More information: Vestibular effects on cerebral blood flow; Jorge M Serrador, Todd T Schlegel, F Owen Black and Scott J Wood; BMC Neuroscience (in press); www.biomedcentral.com/bmcneurosci/

Source: BioMed Central (news : web)

Explore further: Cornell chemists show ALS is a protein aggregation disease

add to favorites email to friend print save as pdf

Related Stories

A rush of blood to the head -- anger increases blood flow

Jul 03, 2009

Mental stress causes carotid artery dilation and increases brain blood flow. A series of ultrasound experiments, described in BioMed Central's open access journal Cardiovascular Ultrasound, also found that this dilatory reflex ...

Stress effects are seen in the brain

Nov 23, 2005

Penn State scientists have developed a non-invasive way to view effects of psychological stress in an area of the brain linked with anxiety and depression.

Recommended for you

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

Oct 22, 2014

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

Oct 22, 2014

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

User comments : 0