Nano-ruler sets some very small marks

Sep 22, 2009

The National Institute of Standards and Technology has issued a new ruler, and even for an organization that routinely deals in superlatives, it sets some records. Designed to be the most accurate commercially available "meter stick" for the nano world, the new measuring tool -- a calibration standard for X-ray diffraction -- boasts uncertainties below a femtometer. That's 0.000 000 000 000 001 meter, or roughly the size of a neutron.

The new ruler is in the form of a thin, multilayer 25 millimeters square (just under an inch). Each one is individually measured and certified by NIST for the spacing and angles of the crystal planes of silicon atoms in the base crystal.

X-ray diffraction works by sending X-rays through a crystal—which could be anything from a wafer used to make microchips to a crystallized sample of an unknown protein—and observing the patterns made by the X-rays as they diffract from electrons in the crystal. The spacing, angles and intensity of the pattern's lines tell a trained crystallographer the relative positions of the atoms in the crystal, as well as something about the quality of the crystal, the nature of the chemical bonds and more. It is one of the workhorse techniques of materials science and engineering. The precision version, high-resolution X-ray diffraction, can be used to determine the thickness, crystal structure, embedded strain and orientation of thin films used in advanced semiconductor devices and nanotechnologies.

Formally NIST Standard Reference Material (SRM) 2000, "Calibration Standard for High-Resolution ," the new ruler gives crystallographers an extremely well-known crystal sample for calibrating their precision instruments. It was made possible by the development of a unique parallel beam diffractometer at NIST that makes measurements traceable to international measurement standards and is believed to be the most accurate angle measuring device of its kind in the world. The NIST instrument can measure angles with an accuracy better than an arc second, 1/3600 of a degree. "Our accuracy is at about the angle made by the diameter of a quarter—if you're looking at it from two miles away," explains NIST materials scientist Donald Windover, "The precision is better, about the size of Washington's nose."

Because the crystal lattice values for SRM 2000—spacing, tilt, orientation—are traceable to SI units, the new material provides an absolute reference for high-precision calibrations. Details are available at https://www-s.nist.gov/srmors/view_detail.cfm?srm=2000.

Source: National Institute of Standards and Technology (news : web)

Explore further: Scientists use simple, low cost laser technique to improve properties and functions of nanomaterials

add to favorites email to friend print save as pdf

Related Stories

Stress Management: X-Rays Reveal Si Thin-Film Defects

Jul 06, 2006

Pile-ups, bad on the freeway, also are a hazard for the makers of high-performance strained-silicon semiconductor devices. A sensitive X-ray diffraction imaging technique developed by researchers at the National Institute ...

NIST releases new standard for semiconductor industry

Oct 12, 2006

A wide range of optical electronic devices, from laser disk players to traffic lights, may be improved in the future thanks to a small piece of semiconductor, about the size of a button, coated with aluminum, gallium, and ...

NIST Unveils Atom-based Standards

Feb 24, 2005

Gaithersburg, MD--Device features on computer chips as small as 40 nanometers (nm) wide—less than one-thousandth the width of a human hair—can now be measured reliably thanks to new test structures developed ...

Crystal structure library gets a 'data lift'

Mar 06, 2006

Much of science these days depends on "black (or beige) boxes," scientific instruments that invisibly analyze data and then, voilá, identify the chemistry and/or structure of a sample. While scientists and ...

Recommended for you

A crystal wedding in the nanocosmos

2 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 0