Researchers discover molecule responsible for axonal branching

Sep 21, 2009

The human brain consists of about 100 billion (1011) neurons, which altogether form about 100 trillion (1014) synaptic connections with each other. A crucial mechanism for the generation of this complex wiring pattern is the formation of neuronal branches. The neurobiologists Dr. Hannes Schmidt and Professor Fritz G. Rathjen at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now discovered a molecule that regulates this vital process. At the same time they have succeeded in elucidating the signaling cascade induced by this molecule.

Through the ramification of its fiber-like axon, a single neuron can send branches and thus transmit information into several target areas at the same time. In principle, neurobiologists distinguish between two kinds of axonal branching: branching of the growth cone at the tip of an axon and the sprouting of collaterals (interstitial branching) from the axon shaft.

Both forms of axonal branching can be observed in , which transmit the sensation of touch, pain and temperature, among others. When the of these neurons reach the spinal cord, their growth cones first split (bifurcate) and consequently the axons divide into two branches growing in opposite directions. Later new branches sprout from the shaft of these daughter axons which penetrate the of the spinal cord.

Through investigations on sensory neurons, Dr. Hannes Schmidt and his colleagues were able to identify a protein which triggers the splitting of the growth cone of the sensory axons: the peptide CNP (the abbreviation stands for C-type natriuretic peptide). In transgenic mice the scientists were able to show that CNP is formed in the spinal cord precisely when sensory neurons grow into it. In the absence of CNP bifurcation can no longer occur which results in reduced neuronal connectivity in the .

The new findings supplement earlier discoveries of the research group of Professor Rathjen according to which a cGMP-signaling cascade is responsible for the bifurcation of sensory axons. When CNP binds to its receptor Npr2 (natriuretic peptide receptor 2) on the surface of the axons, this signaling cascade is set in motion, which in turn induces the formation of the secondary messenger molecule cGMP. This messenger molecule then activates the protein kinase cGKI (cGMP-dependent protein kinase I), which can switch on and off a whole series of target proteins. The cytoskeleton of the neurons is thus altered in such a way that their growth cone splits into two daughter axons.

Next, the researchers want to identify these target proteins. Further analyses should clarify whether the cGMP signaling cascade likewise regulates the branching of other axon systems and whether this impacts the sensation of pain.

More information: C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons, PNAS, Early Edition, 2009, doi:10.1073

Source: Helmholtz Association of German Research Centres (news : web)

Explore further: Neutralising antibodies for safer organ transplants

add to favorites email to friend print save as pdf

Related Stories

Sharing the road

Apr 10, 2008

Come summer, we will once again marvel at the amazing athletic skills of Olympic athletes while in fact, the simple act of walking is no less remarkable. Just to prevent us from toppling over, the neuromuscular ...

Finding the Right Connection after Spinal Cord Injury

Aug 02, 2009

In a major step in spinal cord injury research, scientists at the University of California, San Diego School of Medicine have demonstrated that regenerating axons can be guided to their correct targets and ...

Adult brain cells are movers and shakers

Nov 08, 2007

It’s a general belief that the circuitry of young brains has robust flexibility but eventually gets “hard-wired” in adulthood. As Johns Hopkins researchers and their colleagues report in the Nov. 8 issue ...

Mutation may cause inherited neuropathy

Dec 26, 2007

Mutations in a protein called dynein, required for the proper functioning of sensory nerve cells, can cause defects in mice that may provide crucial clues leading to better treatments for a human nerve disorder known as peripheral ...

Recommended for you

Neutralising antibodies for safer organ transplants

11 hours ago

Serious complications can arise following kidney transplants. If dialysis is required within the first seven days, then the transplanted organ is said to have a Delayed Graft Function (DGF), and essentially ...

User comments : 0