Researchers prolong the half-life of biopharmaceutical proteins

Sep 18, 2009
Structure of a PASylized antibody fragment.

Many biopharmaceuticals comprise small proteins that are quickly eliminated from the body. Scientists at the Technische Universitaet Muenchen (Germany) combine such small proteins with a kind of molecular balloon that swells and thus prolongs the half-life of the proteins in the body. The TUM spin-off XL-Protein GmbH has now started to further develop this new technology with blockbuster potential.

People who suffer from are often treated with the tissue hormone interferon. However, there is a problem: Interferon is a very small , which is filtered from the blood via the kidneys after only a short time. For the patient this means a high-dose injection every other day to keep the effect of the substance from wearing off prematurely.

However, interferon stays in the body much longer when chemically coupled with a synthetic PEG (polyethylene glycol) molecule. PEG is a random coil long-chain polymer string that swells by adsorbing water. That way the PEG molecule becomes large enough that it does not fit through the fine pores of the kidneys - the attached interferon remains in the circulatory system longer, and the patient will need an injection only every one to two weeks.

Using , TU Muenchen scientist Prof. Arne Skerra and his coworkers from the Chair of Biological Chemistry at the Center for Life and Food Sciences Weihenstephan have now developed an amino acid string that tangles up similarly to PEG and also swells in the presence of water. However, unlike many PEG compounds, there is no danger of this biological polymer accumulating in the body. In fact - over an extended period of time - it is discharged or biologically broken down. That happens because this amino acid string (polypeptide) consists of three of the 20 naturally occurring amino acids: proline, alanine and serine, or in short, PAS.

The protein substance interferon, which itself consists of , can thus be easily generated in "PASylated" form. In first trials with animals, TUM scientists established that PASyated interferon has a half-life in the blood that is prolonged by a factor of 60, which should allow a significant extension of dosing intervals during medicinal therapy.

A further advantage is the simplified biotechnological production: The DNA segments carrying the information for the PAS amino acid sequence and for the interferon can simply be attached to each other and then, for instance, used for transforming bacteria. The bacteria then produce the PASylated in one piece, thus making much fewer production steps necessary in comparison with the chemical coupling of PEG. According to Skerra, "this will lead to a significant drop in production cost."

In principle all small proteins currently used as medication or in development in pharmaceutical companies - for example, growth factors or functional antibody fragments - can be PASylated. Thus there could be a huge market for the new technology. Consequently, Prof. Skerra and his team initiated the founding of a new biotech company, XL-Protein GmbH (http://www.xl-protein.com), which started its operations last spring. "Our technology has the potential to give birth to a whole new generation of blockbuster medications," the TUM biochemist is convinced. Several of the new drugs are already at an advanced stage of preclinical development.

Source: Technische Universitaet Muenchen

Explore further: Ultrasound enhancement provides clarity to damaged tendons, ligaments

add to favorites email to friend print save as pdf

Related Stories

Structure of protective protein in the eye lens revealed

Jul 31, 2009

The human eye lens consists of a highly concentrated mix of several proteins. Protective proteins prevent these proteins from aggregating and clumping. If this protective function fails, the lens blurs and ...

Chemists solve biological challenge

Jan 21, 2008

Chemistry professor Ronald Kluger and PhD candidate Svetlana Tzvetkova have made discoveries that could not only allow scientists to generate new kinds of proteins —the building blocks of life—but also eventually lead ...

Researchers make major signal transduction discovery

Oct 04, 2007

The chemical process known as acetylation plays a central role in cytokine receptor signal transduction – a fundamental biochemical cascade inside cells that controls the activity of antiviral and tumor-suppressing genes.

Research breakthrough for the protein factories of tomorrow

Sep 22, 2006

Using a kind of molecular ‘hip joint operation,’ researchers at Uppsala University have succeeded in replacing a natural amino acid in a protein with an artificial one. This step forward opens the possibility of creating ...

Recommended for you

A better way to track emerging cell therapies using MRIs

23 hours ago

Cellular therapeutics – using intact cells to treat and cure disease – is a hugely promising new approach in medicine but it is hindered by the inability of doctors and scientists to effectively track the movements, destination ...

User comments : 0