Smaller isn't always better: Catalyst simulations could lower fuel cell cost

Sep 17, 2009

(PhysOrg.com) -- Imagine a car that runs on hydrogen from solar power and produces water instead of carbon emissions. While vehicles like this won't be on the market anytime soon, University of Wisconsin-Madison researchers are making incremental but important strides in the fuel cell technology that could make clean cars a reality.

Materials science and engineering assistant professor Dane Morgan and Ph.D. student Edward (Ted) Holby have developed a that could optimize an important component of fuel cells, making it possible for the technology to have a more widespread use. Essentially, they investigate how particle size relates to the overall stability of a material, and their model has shown that increasing the particle size of a fuel cell catalyst decreases degradation and therefore increases the useful lifetime of a fuel cell.

Fuel cells are electrochemical devices that facilitate a reaction between hydrogen and oxygen, producing electrical power and forming water. In the type of fuel cells Morgan is researching, called proton exchange membrane fuel cells, or PEMFCs, hydrogen is split into a proton and electron at one side of the fuel cell (the anode). The proton moves through the device while the electron is forced to travel in an external circuit, where it can perform useful work. At the other side of the fuel cell (the cathode), the protons, electrons and oxygen combine to form water, which is the only waste product.

Though the premise sounds straightforward, there are multiple hurdles to producing efficient fuel cells for widespread use. One of these hurdles is the catalyst added to aid the reaction between protons, electrons and oxygen at the . Current fuel cells use and platinum alloys as a catalyst. While platinum can withstand the corrosive fuel cell environment, it is expensive and not very abundant.

To maximize platinum use, researchers use catalysts made with platinum particles as small as two nanometers, which are approximately 10 atoms across. These tiny structures have a large surface area on which the fuel cell reaction occurs. However, platinum catalysts this small degrade very quickly.

"The stability of bulk versus nanoparticle materials can be understood intuitively by thinking of cheese," says Morgan. "When you leave a large chunk of cheese out and the edges get crusty, the surface is destroyed, but you can cut that off and there is still a lot of cheese inside that is good.

"But if you crumble the cheese into tiny pieces and leave it out, you destroy all of your cheese because a larger fraction of the cheese is at the surface."

Rapid catalyst degradation means the fuel cell doesn't last long, and the U.S. Department of Energy estimates fuel cells must function for 5,000 hours, or approximately seven months of continuous use, to be practical for automotive energy solutions.

Morgan and Holby, who are working in collaboration with Professor Yang Shao-Horn from the Massachusetts Institute of Technology, have found a possible solution to the rapid degradation problem: When it comes to catalyst particle size, sometimes smaller isn't better.

Their modeling work, which is funded by 3M and the U.S. Department of Energy, shows that if the particle size of a platinum catalyst is increased to four or five nanometers, which is approximately 20 atoms across, the level of degradation significantly decreases. This means the and the fuel cell as a whole can continue to function for much longer than if the particle size was only two or three nanometers.

The research into the fundamental physics of particle size will be useful as scientists extend their platinum studies to exploring platinum alloys, which can reduce platinum consumption when used as catalysts. Morgan is beginning to research models to study size effects on the stability of platinum alloys, such as copper-platinum and cobalt-platinum catalysts.

"Fuel cells are just one of many energy technologies — solar, battery, etc. — with enormous potential to reduce our dependence on oil and our ," says Morgan. "Computer simulation offers a powerful tool to understand and develop new materials at the heart of these energy technologies."

Provided by UW-Madison

Explore further: Proteins: New class of materials discovered

add to favorites email to friend print save as pdf

Related Stories

Argonne to study fuel cell catalysts

May 26, 2005

Argonne National Laboratory will receive $3 million over three years for basic science studies that may lead to improved catalysts for hydrogen fuel cells.

Carbon Nanotubes Make Fuel Cells Cheaper

Feb 09, 2009

(PhysOrg.com) -- As fuel cells are becoming more popular due to their potential use in applications such as hydrogen-powered vehicles, auxiliary power systems, and electronic devices, the need for the precious ...

Less expensive fuel cell may be possible

Oct 03, 2006

Scientists at Los Alamos National Laboratory have developed a new class of hydrogen fuel-cell catalysts that exhibit promising activity and stability. The catalysts are made of low-cost nonprecious metals entrapped in something ...

Fuel cells gearing up to power auto industry

Oct 30, 2007

The average price for all types of gasoline is holding steady around $2.95 per gallon nationwide, but the pain at the pump might be short-lived as research from the University of Houston may eliminate one of the biggest hurdles ...

Platinum-rich shell, platinum-poor core

Oct 23, 2007

Hydrogen fuel cells will power the automobiles of the future; however, they have so far suffered from being insufficiently competitive. At the University of Houston, Texas, USA, a team led by Peter Strasser has now developed ...

Recommended for you

Proteins: New class of materials discovered

Aug 22, 2014

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

The fluorescent fingerprint of plastics

Aug 21, 2014

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

Aug 21, 2014

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

Aug 21, 2014

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0