Graphene and gallium arsenide: Two perfect partners find each other

Sep 16, 2009
The normally practically invisible single-carbon-atom layers can be made visible under a normal light (optical) microscope, if the support (layer) is designed as an anti-reflection filter. Single-layer graphene was identified inside the markings. (Image: PTB)

It is the marriage of two top candidates for the electronics of the future, both excentric and extremely interesting: Graphene, one of the partners, is an extremely thin fellow and besides, very young.

Not until 2004 was it possible to specifically produce and investigate the single layer of carbon atoms. Its are remarkable, because, among other things, its electrons can move so tremendously fast. It is a perfect partner for gallium arsenide, the semiconductor that allows tailoring of its electrical properties and which is the starting material of the fastest electrical and opto-electronic components. Besides, it is possible to produce gallium arsenide with an atomic-layer-smooth surface; this should suit well as a support for .

Scientists of the Physikalisch-Technische Bundesanstalt (PTB) have now, with the aid of a special design, succeeded in making graphene visible on gallium arsenide. Previously it has only been possible on . Now that they are able to view with a light the graphene layer, which is thinner than one thousandth of a light wavelength, the researchers want to measure the electrical properties of their new material combination. As experts for precision measurements, the PTB physicists are thus especially well equipped to do this.

They use the principle of the anti-reflective layer: If on a material one superimposes a very thin, nearly transparent layer of another material, then the reflectivity of the lower layer changes clearly visibly. In order to make their lower layer of gallium arsenide (plus graphene atomic layer) visible, the PTB physicists chose aluminium arsenide (AlAs). However, it is so similar to gallium arsenide (GaAs) in its optical properties that they had to employ a few tricks: They vapour-coated not only one, but rather several wafer-thin layers. "Thus, even with optically similar materials it is possible, in a manner of speaking, to 'grow' interference effects", Dr. Franz-Josef Ahlers, the responsible department head at PTB, explained. "This principle is known from optical interference filters. We have adapted it for our purposes".

First of all, he and his colleagues calculated the of different GaAs and AlAs layers and optimized the layer sequence such that they could expect a sufficiently good detectability of graphene. Following this recipe, they got down to action and with the molecular beam epitaxial facility of PTB accurately produced a corresponding GaAs/AlAs crystal atom layer. Then in the same procedure as with silicon oxide, it was overlaid with graphite fragments. "Different from silicon but as predicted by the calculation, although single carbon layers are no longer visible at all wavelengths of visible light, it is, however, possible, e.g. with a simple green filter, to limit the wavelength range such that the graphene is easily visible", explained Ahlers.

In the photo, all lighter areas of the dark GaAs are covered with graphene. From the degree of lightening it is possible to conclude the number of individual layers of atoms. The marked areas are 'real', that is, single-layer graphene. But next to them, there are also two, three and multiple layers of , which also have interesting properties. This arrangement was confirmed again with another method, Raman spectroscopy.

Following such a simple identification with a normal light optical microscope, the further steps in the manufacture of electrical components from graphene surfaces are now possible without any difficulty. Thus the PTB scientists can now begin to accurately measure the of the new material combination.

More information: Graphene on : Engineering the visibility. M. Friedemann, K. Pierz, R. Stosch, F. J. Ahlers. Appl. Phys. Lett. 95, DOI: 10.1063/1.3224910

Source: Physikalisch-Technische Bundesanstalt

Explore further: Negative electronic compressibility: More is less in novel material

Related Stories

A Smarter Way to Grow Graphene

May 14, 2008

Graphene, a sheet of carbon just one atom thick, has many potential uses in the electronics industry, but producing these ideal two-dimensional carbon sheets is very difficult and, as a result, their use has ...

Graphene makes movement easy for electrons

Jan 08, 2008

Researchers at The University of Manchester have found that electrons move more easily in graphene than all other materials, including gold, silicon, gallium arsenide and carbon nanotubes.

Graphene -- the copy beats the original

Jul 17, 2009

( -- The first artificial graphene has been created at the NEST laboratory of the Italian Institute for the Physics of Matter (INFM-CNR) in Pisa. It is sculpted on the surface of a gallium-arsenide ...

Physics graduate creates graphene resonator

Feb 18, 2007

In the world of cutting-edge physics, discoveries are often made using intricate procedures and elaborate, expensive instruments. But a paper by Cornell graduate student Scott Bunch and colleagues shows how ...

Graphene oxide paper could spawn a new class of materials

Jul 25, 2007

Nearly 2,000 years ago, the discovery of paper revolutionized human communication. Now researchers at Northwestern University have fabricated a new type of paper that they hope will create a revolution of its own -- and while ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Sep 16, 2009
wow... Did the author not spend any time reviewing that piece before it was posted, or was it simply a case of 'not his/her first language'? The article was so poorly crafted as to be nearly unreadable.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.