Enzyme Crucial to Insulin Resistance Found in Brain

Sep 14, 2009
Stephen Benoit, PhD
Stephen Benoit, PhD

An enzyme known to cause insulin resistance in muscle is also located in the brain and has a similar function there, a research team that includes a University of Cincinnati scientist has found.

An enzyme known to cause insulin resistance in muscle is also located in the brain and has a similar function there, a research team that includes a University of Cincinnati (UC) scientist has found.

The discovery is a major step in obesity and metabolic research because insulin plays a significant role in areas of the brain that control food intake, body weight and glucose regulation.

The researchers detail their findings in the September issue of the Journal of Clinical Investigation, the publication of the American Society of Clinical Investigation, an honor society of physician-scientists. The article is available online at www.jci.org .

Stephen Benoit, PhD, an associate professor in the psychiatry department at UC, participated in the study, which also included scientists from the University of Texas Southwestern Medical Center, the University of Paris and Vanderbilt University. UC research assistants William Abplanalp and Christopher Kemp also participated in the study.

Using animal models, the research team found that the enzyme PKC-theta was expressed in the hypothalamus, a region of the brain that controls body weight and regulation. Exposure of the central nervous system to the fatty acid palmitic acid activated hypothalamic PKC-theta in the hypothalamus. In turn, this activation impaired the function of insulin as well as the , which is released by fat cells and also plays a key role in energy intake and expenditure.

“So when the PKC-theta enzyme is active—for instance, when a diet high in fat is consumed—it’s turning off insulin signaling prematurely,” says Benoit. “And that signaling cascade is important to ultimately controlling food intake and body weight.

“If you remove insulin and leptin signaling from the hypothalamus, an animal can become obese or diabetic—it lacks the ability to sense the correct metabolic environment. In other words, it doesn’t know that it’s full and needs to stop eating.”

Humans commonly ingest palmitic acid through the diet, Benoit says, particularly in dairy products and meat.

The findings have important implications for nutritional counseling and drug discovery, Benoit says.

“Depending on how selectively PKC-theta is expressed in the , the idea of inhibiting its activity represents an interesting potential new drug target,” he says.

In addition, Benoit says, the findings will help provide insight into why rapid change in the regulation system occurs in response to a high-fat diet—even something as brief as a weekend binge of hamburgers, ice cream and other fatty foods.

“We know that diets that are high in fat can cause very rapidly,” he says. “And even if one withdraws the high-fat diet later, the impairment can remain. So understanding how that may happen in the may have some insight for our understanding of the impact of even brief periods of certain kinds of foods.”

Provided by University of Cincinnati (news : web)

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

add to favorites email to friend print save as pdf

Related Stories

Your brain and hormones may conspire to make you fat

Apr 30, 2007

Why do some people get fat even when they eat relatively little? What creates that irresistible urge for a bag of potato chips or a hunk of chocolate cake, as opposed to a nice crisp apple? Can food urges be irresistible?

Major link in brain-obesity puzzle found

Jan 29, 2007

A single protein in brain cells may act as a linchpin in the body’s weight-regulating system, playing a key role in the flurry of signals that govern fat storage, sugar use, energy balance and weight, University of Michigan ...

Recommended for you

New pain relief targets discovered

4 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

4 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

7 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Our brains are hardwired for language

A groundbreaking study published in PLOS ONE by Prof. Iris Berent of Northeastern University and researchers at Harvard Medical School shows the brains of individual speakers are sensitive to language univer ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...