MU engineers develop safer, blast-resistant glass (w/ Video)

Sep 10, 2009

To protect from potential terrorist attacks, federal buildings and other critical infrastructures are made with special windows that contain blast-resistant glass. However, the glass is thick and expensive. Currently, University of Missouri researchers are developing and testing a new type of blast-resistant glass that will be thinner, lighter and less vulnerable to small-scale explosions.

"Currently, blast-resistant window glass is more than 1 inch thick, which is much thicker than standard window glass that is only one-fourth of an inch thick and hurricane-protected window glass that is one-half of an inch thick," said Sanjeev Khanna, associate professor of mechanical and aerospace engineering in the MU College of Engineering. "The glass we are developing is less than one-half of an inch thick. Because the glass panel will be thinner, it will use less material and be cheaper than what is currently being used."

This video is not supported by your browser at this time.
To protect from potential terrorist attacks, federal buildings and other critical infrastructures are made with special windows that contain blast-resistant glass. However, the glass is thick and expensive. Currently, University of Missouri researchers are developing and testing a new type of blast-resistant glass that will be thinner, lighter and less vulnerable to small-scale explosions. Credit: Cooperative Media Group

Conventional blast-resistant glass is made with laminated glass that has a plastic layer between two sheets of glass. MU researchers are now replacing the plastic layer with a transparent composite material made of glass fibers that are embedded in plastic. The glass fibers add strength because, unlike plastic, they are only about 25 microns thick, which is about half the thickness of a typical human hair, and leave little room for defects in the glass that could lead to cracking. The use of a transparent composite interlayer provides us the flexibility to change the strength of the layer by changing the glass fiber quantity and its orientation, Khanna said.

In tests, researchers are observing how the glass reacts to small-scale explosions caused by a grenade or hand-delivered bomb. They tested the glass by exploding a small bomb within close proximity of the window panel. After the blast, the glass panel was cracked but had no holes in the composite layer.

"The new multilayered transparent glass could have a wide range of potential uses if it can be made strong enough to resist small-scale explosions," Khanna said. "The super-strong also may protect residential windows from hurricane winds and debris or earthquakes. Most hurricane damage occurs when windows are punctured, which allows for high-speed wind and water to enter the structure."

Source: University of Missouri-Columbia (news : web)

Explore further: Scientists develop pioneering new spray-on solar cells

add to favorites email to friend print save as pdf

Related Stories

Engineers set to create bomb-proof 'curtains'

Dec 05, 2006

Engineers from the University of Exeter are working on an innovative new project to create curtains made from a ‘smart’ material that could minimize injuries inflicted by a terrorist attack.

Tunable Windows To Keep Office Secrets

Dec 13, 2004

Secrets that zip across offices through wireless computing networks all too easily also zip through office windows into the hands of competitors – now researchers at the University of Warwick have devised a method of producing ...

Storing a Lightning Bolt in Glass for Portable Power

May 05, 2009

(PhysOrg.com) -- Materials researchers at Penn State University have reported the highest known breakdown strength for a bulk glass ever measured. Breakdown strength, along with dielectric constant, determines ...

Sign of ancient Egyptian glassmaking found

Jun 17, 2005

QANTIR-PIRAMESSES, Egypt, June 17 (UPI) -- Scientists say they have found the first conclusive evidence of a glass factory in ancient Egypt. They believe their find offers new insights into production techniques for a com ...

Recommended for you

Scientists develop pioneering new spray-on solar cells

18 hours ago

(Phys.org) —A team of scientists at the University of Sheffield are the first to fabricate perovskite solar cells using a spray-painting process – a discovery that could help cut the cost of solar electricity.

Free pores for molecule transport

Jul 31, 2014

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

sender
not rated yet Sep 11, 2009
i wonder about aerogel composite glasses in comparison