Lipid involved with gene regulation uncovered

Sep 04, 2009

Virginia Commonwealth University School of Medicine researchers have discovered a new role for the bioactive lipid messenger, sphingosine-1-phosphate, or S1P, that is abundant in our blood - a finding that could lead to a new generation of drugs to fight cancer and inflammatory disease.

In the Sept. 4 issue of the journal Science, a team led by Sarah Spiegel, Ph.D., professor and chair in the VCU Department of Biochemistry and Molecular Biology and co-leader of the VCU Massey Cancer Center's cancer cell biology program, reported that the , which contains the DNA that codes for all of our genes, also contains and produces S1P that is important for the regulation of certain genes. Researchers have known that the nucleus contains several kinds of lipids, but their functions have remained unknown until now. The team identified the mechanisms by which produce S1P in the nucleus and uncovered its new function there to regulate .

Spiegel, who is internationally recognized for her pioneering work on new lipid mediators that regulate cell growth and cell death, and her colleagues first discovered the role of S1P in cell growth regulation nearly a decade ago.

In this study, the team demonstrated that S1P, produced by type 2 sphingosine kinase in the nucleus, regulates genes by acting like a widely used type of cancer chemotherapeutic drug known as histone deacetylase inhibitors. Histone deacetylases are a family of enzymes that regulate expression of numerous genes that code for proteins involved in cancer and many other human diseases. Although several types of histone deacetylase inhibitors are now in clinical trials, the physiological regulators of these important enzymes were not known.

"Our work shows that S1P is a physiologically important regulator of histone deacetylases," said lead author Spiegel.

"We believe that our studies will help in the development of a new class of histone deacetylase inhibitors that might be useful for treatment of cancer and inflammatory diseases," she said.

According to Spiegel, previous investigations have shown that increased levels of type 1 sphingosine kinase, one of the two enzymes that produce S1P inside cells, but not in their nucleus, correlates with poor outcome in many types of human cancers. Spiegel and her team have previously developed a specific inhibitor of this type 1 sphingosine kinase and showed that it was effective in mice against growth of human leukemia and brain tumors.

Source: Virginia Commonwealth University (news : web)

Explore further: Opportunities to reduce patient burden associated with breast cancer screening

add to favorites email to friend print save as pdf

Related Stories

Potential new therapeutic molecular target to fight cancer

Nov 01, 2007

Researchers at the Virginia Commonwealth University Massey Cancer Center have identified the enzyme sphingosine kinase 2 as a possible new therapeutic target to improve the efficacy of chemotherapy for colon and breast cancer.

Future therapies for stroke may block cell death

Jun 14, 2007

A new therapy to re-activate silenced genes in patients who suffer from neurodegenerative diseases or stroke is being developed by researchers at the University of Illinois at Chicago and Cornell University.

Recommended for you

XenOPAT, mouse models for personalized cancer treatment

4 hours ago

On September 8th, the company XenOPAT SL, a spin-off of the Institute of Biomedical Research (IDIBELL) and the Catalan Institute of Oncology (ICO) was established with the aim of bringing the company the latest scientific ...

User comments : 0