Ego City: Cities organized like human brains

Sep 03, 2009
Cities are organized like brains, and the evolution of cities mirrors the evolution of human and animal brains, according to a new study by researchers at Rensselaer Polytechnic Institute. Just as advanced mammalian brains require a robust neural network to achieve richer and more complex thought, large cities require advanced highways and transportation systems to allow larger and more productive populations. Credit: Rensselaer/Mark Changizi

(PhysOrg.com) -- Cities are organized like brains, and the evolution of cities mirrors the evolution of human and animal brains, according to a new study by researchers at Rensselaer Polytechnic Institute.

Just as advanced mammalian brains require a robust to achieve richer and more complex thought, large cities require advanced highways and transportation systems to allow larger and more productive populations. The new study unearthed a striking similarity in how larger brains and cities deal with the difficult problem of maintaining sufficient interconnectedness.

" has passively guided the evolution of mammalian brains throughout time, just as politicians and entrepreneurs have indirectly shaped the organization of cities large and small," said Mark Changizi, a neurobiology expert and assistant professor in the Department of at Rensselaer, who led the study. "It seems both of these invisible hands have arrived at a similar conclusion: brains and cities, as they grow larger, have to be similarly densely interconnected to function optimally."

As brains grow more complex from one species to the next, they change in structure and organization in order to achieve the right level of interconnectedness. One couldn't simply grow a double-sized dog brain, for example, and expect it to have the same capabilities as a human brain. This is because, among other things, a human brain doesn't merely have more "dog ," but, instead, has neurons with a greater number of synapses than that of a dog - something crucial in helping to keep the human brain well connected.

As with brains, interconnectedness is also a critical component of the overall function of cities, Changizi said. One couldn't put together three copies of Seattle (surface area of 83.9 sq. miles) and expect the result to have the same interconnectedness and efficiency as Chicago (surface area of 227.1 sq. miles). There would be too many highways with too few exits and lanes that are too narrow.

In exploring this topic, Changizi discovered evidence linking the size of a or a brain to the number and size of its supporting infrastructure. He investigated and documented how the infrastructures scale up as the surface area of brains and cities increase.

As cities and the neocortex grow in surface area, the number of connectors - highways in cities and pyramidal neurons in brains - increases more slowly, as surface area to the 3/4 power, Changizi found. This means the number of connectors increases in both brains and cities as S3/4, where S = . Similarly, as cities and brains grow, the total number of highway exits and synapses - which share a similar function as terminal points along highways and neurons - increases with an exponent of about 9/8. The number of exits per highway and synapses per neuron were also closely aligned, with an exponent of approximately 3/8.

These and other findings are detailed in the paper "Common Scaling Laws for City Highway Systems and the Mammalian Neocortex," published this week in the journal Complexity.

"When scaling up in size and function, both cities and brains seem to follow similar empirical laws," Changizi said. "They have to efficiently maintain a fixed level of connectedness, independent of the physical size of the or city, in order to work properly."

More information: www3.interscience.wiley.com/jo… l/122539629/abstract

Source: Rensselaer Polytechnic Institute (news : web)

Explore further: A new way to diagnose malaria, using magnetic fields

add to favorites email to friend print save as pdf

Related Stories

Researchers identify gene involved in building brains

Mar 29, 2005

A tiny molecule is key to determining the size and shape of the developing brain, researchers from the Picower Institute for Learning and Memory at MIT reported in the March issue of Nature Neuroscience. This molecule may on ...

Big-brained birds survive better in nature

Jan 10, 2007

Birds with brains that are large in relation to their body size have a lower mortality rate than those with smaller brains, according to new research published in the journal Proceedings of the Royal Society B: Biological Sc ...

U.S. cities rated for 'sustainability'

Jun 01, 2006

SustainLane has issued its 2006 ranking of U.S. cities across 12 major "sustainability" categories, with West Coast cities taking the top spots.

Recommended for you

A new way to diagnose malaria, using magnetic fields

15 hours ago

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye, and ...

How Alzheimer's peptides shut down cellular powerhouses

Aug 29, 2014

The failing in the work of nerve cells: An international team of researchers led by Prof. Dr. Chris Meisinger from the Institute of Biochemistry and Molecular Biology of the University of Freiburg has discovered ...

User comments : 0