Transplanted human stem cells prolong survival in mouse model of rare brain disease

Sep 03, 2009

A new study finds substantial improvement in a mouse model of a rare, hereditary neurodegenerative disease after transplantation of normal human neural stem cells. The research findings, published by Cell Press in the September 4th issue of the journal Cell Stem Cell, show that the transplanted cells provided a critical enzyme that was missing in the brains of the experimental mice and represent an important step toward what may be a successful therapeutic approach for a currently untreatable and devastating disease.

Infantile neuronal ceroid lipofuscinosis (INCL), commonly known as Batten disease, is a fatal neurodegenerative disease in children. It is caused by a mutation in the gene that makes a crucial enzyme called palmitoyl protein thioesterase-1 (PPT1). A deficiency of PPT1 in the brain causes the abnormal accumulation of a cellular lipid storage material called lipofuscin, which leads to neuron death, a decline in cognitive and motor skills, visual impairment, seizures and premature death. Unfortunately, intravenous enzyme replacement therapy is not a viable treatment approach as it is nearly impossible to get the PPT1 enzyme into the brain.

Although there is currently no effective treatment for INCL, it has been hypothesized that transplanted donor cells might be able to secrete the needed enzyme directly into the host brain. A mouse model of INCL that mimics many aspects of the human disease has been developed and provides an excellent experimental model for testing whether a human neural may be a beneficial disease treatment. Dr. Nobuko Uchida from StemCells, Inc., in Palo Alto, California led a study that tested this hypothesis with banked human that had been purified, expanded, and preserved.

"We took a novel approach and transplanted normal, nontumorigenic, and nongenetically modified human neural stem cells to deliver the deficient enzyme in the mouse model of INCL," explains Dr. Uchida. "We transplanted self-renewing human neural stem cells because, theoretically, these transplants can provide life-long production of the missing enzyme." Dr. Uchida and colleagues found that the purified human neural stem cells engrafted to the brain of INCL mice, migrated extensively, and produced enough PPT1 in the host mice to elicit significant improvement. Specifically, the INCL mice exhibited reduced lipofuscin, widespread neuroprotection, and a delayed loss of motor coordination.

"Early intervention with neural stem cell transplants into the brains of INCL patients may supply a continuous and long-lasting source of the missing PPT1 and provide some therapeutic benefit through protection of endogenous neurons," concludes Dr. Uchida. "These data support our rationale for continued development in humans and the potential for a medical breakthrough in this deadly disease." Notably, StemCells, Inc., recently reported positive results from the first Phase 1 clinical trials assessing the safety of these human neural stem cells as a potential treatment for Batten disease.

Source: Cell Press (news : web)

Explore further: Scientists discover new clues to how weight loss is regulated

add to favorites email to friend print save as pdf

Related Stories

First stem cells injected into brains

Mar 11, 2006

A clinical trial in Oregon will explore the safety of injecting human stem cells directly into the brain to treat fatal pediatric neurodegenerative disorder.

Replacing the cells lost in Parkinson disease

Dec 03, 2007

Parkinson disease (PD) is caused by the progressive degeneration of brain cells known as dopamine (DA) cells. Replacing these cells is considered a promising therapeutic strategy. Although DA cell–replacement therapy by ...

Stem cells as cancer therapy

Dec 26, 2006

It is widely hoped that neural stem cells will eventually be useful for replacing nerves damaged by degenerative diseases like Alzheimer disease and multiple sclerosis. But there may also be another use for such stem cells--delivering ...

Recommended for you

Scientists discover new clues to how weight loss is regulated

47 minutes ago

A hormone seen as a popular target to develop weight-loss drugs works by directly targeting the brain and triggering previously unknown activity in the nervous system, UT Southwestern Medical Center obesity researchers have ...

Team finds key signaling pathway in cause of preeclampsia

3 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

7 hours ago

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0