Transplanted human stem cells prolong survival in mouse model of rare brain disease

Sep 03, 2009

A new study finds substantial improvement in a mouse model of a rare, hereditary neurodegenerative disease after transplantation of normal human neural stem cells. The research findings, published by Cell Press in the September 4th issue of the journal Cell Stem Cell, show that the transplanted cells provided a critical enzyme that was missing in the brains of the experimental mice and represent an important step toward what may be a successful therapeutic approach for a currently untreatable and devastating disease.

Infantile neuronal ceroid lipofuscinosis (INCL), commonly known as Batten disease, is a fatal neurodegenerative disease in children. It is caused by a mutation in the gene that makes a crucial enzyme called palmitoyl protein thioesterase-1 (PPT1). A deficiency of PPT1 in the brain causes the abnormal accumulation of a cellular lipid storage material called lipofuscin, which leads to neuron death, a decline in cognitive and motor skills, visual impairment, seizures and premature death. Unfortunately, intravenous enzyme replacement therapy is not a viable treatment approach as it is nearly impossible to get the PPT1 enzyme into the brain.

Although there is currently no effective treatment for INCL, it has been hypothesized that transplanted donor cells might be able to secrete the needed enzyme directly into the host brain. A mouse model of INCL that mimics many aspects of the human disease has been developed and provides an excellent experimental model for testing whether a human neural may be a beneficial disease treatment. Dr. Nobuko Uchida from StemCells, Inc., in Palo Alto, California led a study that tested this hypothesis with banked human that had been purified, expanded, and preserved.

"We took a novel approach and transplanted normal, nontumorigenic, and nongenetically modified human neural stem cells to deliver the deficient enzyme in the mouse model of INCL," explains Dr. Uchida. "We transplanted self-renewing human neural stem cells because, theoretically, these transplants can provide life-long production of the missing enzyme." Dr. Uchida and colleagues found that the purified human neural stem cells engrafted to the brain of INCL mice, migrated extensively, and produced enough PPT1 in the host mice to elicit significant improvement. Specifically, the INCL mice exhibited reduced lipofuscin, widespread neuroprotection, and a delayed loss of motor coordination.

"Early intervention with neural stem cell transplants into the brains of INCL patients may supply a continuous and long-lasting source of the missing PPT1 and provide some therapeutic benefit through protection of endogenous neurons," concludes Dr. Uchida. "These data support our rationale for continued development in humans and the potential for a medical breakthrough in this deadly disease." Notably, StemCells, Inc., recently reported positive results from the first Phase 1 clinical trials assessing the safety of these human neural stem cells as a potential treatment for Batten disease.

Source: Cell Press (news : web)

Explore further: Everest trek shows how some people get type 2 diabetes

add to favorites email to friend print save as pdf

Related Stories

First stem cells injected into brains

Mar 11, 2006

A clinical trial in Oregon will explore the safety of injecting human stem cells directly into the brain to treat fatal pediatric neurodegenerative disorder.

Replacing the cells lost in Parkinson disease

Dec 03, 2007

Parkinson disease (PD) is caused by the progressive degeneration of brain cells known as dopamine (DA) cells. Replacing these cells is considered a promising therapeutic strategy. Although DA cell–replacement therapy by ...

Stem cells as cancer therapy

Dec 26, 2006

It is widely hoped that neural stem cells will eventually be useful for replacing nerves damaged by degenerative diseases like Alzheimer disease and multiple sclerosis. But there may also be another use for such stem cells--delivering ...

Recommended for you

Researchers transplant regenerated oesophagus

17 hours ago

Tissue engineering has been used to construct natural oesophagi, which in combination with bone marrow stem cells have been safely and effectively transplanted in rats. The study, published in Nature Communications, shows ...

User comments : 0

More news stories

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.