Researchers find that protein believed to protect against cancer has a Mr. Hyde side

Sep 03, 2009

In a biological rendition of fiction's Strange Case of Dr. Jekyll and Mr. Hyde, researchers from the Mayo Clinic campus in Florida and Harvard Medical School have found that a protein thought to protect against cancer development can actually spur the spread of tumors.

The scientists, reporting in the Sept. 3 issue of , found that FOXO3a, a transcription factor that regulates gene expression, becomes active when growing begin to starve. Their research suggests that this protein then turns on molecular switches that allow the cells to invade surrounding tissues.

"This is a complete reversal of what everyone thought about FOXO3a — that we should find a way to activate this transcription factor so as to fight cancer growth," says cancer biologist Peter Storz, Ph.D., the study's lead investigator from Mayo Clinic in Florida.

Findings from the study, which was funded in part by the Florida Department of Health, illustrate the growing recognition in the research community that proteins can play multiple roles with respect to tumor progression, he says.

"More and more we see that, when it comes to cancer, proteins can have split personalities," Dr. Storz says. "Proteins once firmly believed to be tumor suppressors that protect against cancer development have recently been found to act as oncogenes, or cancer promoters, in certain cancers and in some biological circumstances. We now understand that proteins behave in different ways, depending on the cellular context."

Dr. Storz and his laboratory colleagues focus on understanding how cancer cells spread. This study builds upon a recent finding by collaborating author Alex Toker, Ph.D., associate professor, Department of Pathology, Harvard Medical School. Dr. Toker had found that Akt, a protein that protects tumor cells from programmed cell death and induces proliferation of cancer, in some circumstances also inhibits tumor cell invasion. "This is an important protein that dogma said acts as an oncogene but which Dr. Toker demonstrated could also inhibit cancer spread, and thus may act as a suppressor for metastasis," Dr. Storz says.

Because Akt is an important negative-regulator of FOXO3a, the team looked at whether FOXO3a was actually the player with the Jekyll and Hyde split personality. They found that the transcription factor does indeed revert to its dangerous persona when a cancer cell becomes starved. "Our hypothesis is that if a cancer cell doesn't get the nutrients it needs, it turns on FOXO3a, which leads to the migration and invasion of tumor cells into areas with better growth conditions," Dr. Storz says. "This data fits neatly with Dr. Toker's findings about Akt, because Akt targets FOXO3a."

Source: Mayo Clinic (news : web)

Explore further: Pain and itch may be signs of skin cancer

add to favorites email to friend print save as pdf

Related Stories

FOXO factor promotes survival of oxygen-deprived cancer cells

Dec 27, 2007

Scientists report that an evolutionarily conserved transcription factor may have both positive and negative effects on the growth of tumors, depending on whether or not the tumor cells have enough oxygen. The research, published ...

Oncoproteins double-team and destroy vital tumor-suppressor

Feb 14, 2008

Two previously unconnected cancer-promoting proteins team up to ambush a critical tumor suppressor by evicting it from the cell's nucleus and then marking it for death by a protein-shredding mechanism, a team led by scientists ...

A potential sugar fix for tumors

Apr 16, 2008

Researchers at the Duke School of Medicine apparently have solved the riddle of why cancer cells like sugar so much, and it may be a mechanism that could lead to better cancer treatments.

Recommended for you

Pain and itch may be signs of skin cancer

14 hours ago

Asking patients if a suspicious skin lesion is painful or itchy may help doctors decide whether the spot is likely to be cancerous, according to a new study headed by Gil Yosipovitch, MD, Chairman of the Department of Dermatology ...

Genetics of cancer: Non-coding DNA can finally be decoded

18 hours ago

Cancer is a disease of the genome resulting from a combination of genetic modifications (or mutations). We inherit from our parents strong or weak predispositions to developing certain kinds of cancer; in addition, we also ...

User comments : 0