Discovery of novel genes could unlock mystery of what makes us uniquely human

Sep 01, 2009

Humans and chimpanzees are genetically very similar, yet it is not difficult to identify the many ways in which we are clearly distinct from chimps. In a study published online in Genome Research, scientists have made a crucial discovery of genes that have evolved in humans after branching off from other primates, opening new possibilities for understanding what makes us uniquely human.

The prevailing wisdom in the field of was that new genes could only evolve from duplicated or rearranged versions of preexisting genes. It seemed highly unlikely that could produce a functional protein-coding gene from what was once inactive DNA.

However, recent evidence suggests that this phenomenon does in fact occur. Researchers have found genes that arose from non-coding DNA in flies, , and primates. No such genes had been found to be unique to humans until now, and the discovery raises fascinating questions about how these genes might make us different from other primates.

In this work, David Knowles and Aoife McLysaght of the Smurfit Institute of Genetics at Trinity College Dublin undertook the painstaking task of finding protein-coding genes in the human genome that are absent from the chimp genome. Once they had performed a rigorous search and systematically ruled out false results, their list of candidate genes was trimmed down to just three. Then came the next challenge. "We needed to demonstrate that the DNA in human is really active as a gene," said McLysaght.

The authors gathered evidence from other studies that these three genes are actively transcribed and translated into proteins, but furthermore, they needed to show that the corresponding in other primates are inactive. They found that these DNA sequences in several species of apes and monkeys contained differences that would likely disable a protein-coding gene, suggesting that these genes were inactive in the ancestral primate.

The authors also note that because of the strict set of filters employed, only about 20% of human genes were amenable to analysis. Therefore they estimate there may be approximately 18 human-specific genes that have arisen from non-coding DNA during human evolution.

This discovery of novel protein-coding genes in humans is a significant finding, but raises a bigger question: What are the proteins encoded by these genes doing? "They are unlike any other human genes and have the potential to have a profound impact," McLysaght noted. While these genes have not been characterized yet and their functions remain unknown, McLysaght added that it is tempting to speculate that human-specific genes are important for human-specific traits.

More information: Knowles DG, McLysaght A. Recent de novo origin of human protein-coding genes. Res; doi:10.1101/gr.095026.109

Source: Cold Spring Harbor Laboratory (news : web)

Explore further: A nucleotide change could initiate fragile X syndrome

add to favorites email to friend print save as pdf

Related Stories

Comparing Chimp, Human DNA

Oct 12, 2006

Most of the big differences between human and chimpanzee DNA lie in regions that do not code for genes, according to a new study. Instead, they may contain DNA sequences that control how gene-coding regions are activated ...

Study: Junk DNA is critically important

Oct 19, 2005

A University of California-San Diego scientist says genetic material derisively called "junk" DNA is important to an organism's evolutionary survival.

Evolution is driven by gene regulation

Aug 09, 2007

It is not just what’s in your genes, it’s how you turn them on that accounts for the difference between species — at least in yeast — according to a report by Yale researchers in this week’s issue of Science.

Human-chimp difference may be bigger

Dec 20, 2006

Approximately 6 percent of human and chimp genes are unique to those species, report scientists from Indiana University Bloomington and three other institutions. The new estimate, reported in the inaugural ...

Recommended for you

A nucleotide change could initiate fragile X syndrome

17 hours ago

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

User comments : 0