Researchers examine mechanisms that help cancer cells proliferate

Sep 01, 2009

A process that limits the number of times a cell divides works much differently than had been thought, opening the door to potential new anticancer therapies, researchers at UT Southwestern Medical Center report in the Aug. 7 issue of the journal Cell.

Most in the human body divide only a certain number of times, via a countdown mechanism that stops them. When the controlling process goes wrong, the cells divide indefinitely, contributing to .

The number of times a cell divides is determined by special segments of DNA called telomeres, which are located at the ends of each chromosome. Every time a cell divides, the telomeres get shorter. When they are reduced to a certain length, the cell stops dividing.

In the new study, UT Southwestern researchers used both normal and cancerous human cells to examine closely how telomeres behave during cell division.

As a cell prepares to divide into two new cells, its ladder-shaped DNA "unzips," creating two halves, each resembling a single upright of a ladder with a set of half-length rungs. Fresh then fills in the rungs and a second upright. This process creates two identical sets of that will be allotted between the two cells.

From earlier studies on model organisms such as yeast, scientists thought that all telomeres replicated late in the stage of overall DNA replication, and by the same processes. The new study suggests that telomeres replicate at various times during this stage, except for a final step that is not completed until the very end, via a different, unknown mechanism.

"Interfering with replication of telomeres might provide a way to halt uncontrolled spread of cancer cells," said Dr. Woodring Wright, professor of cell biology at UT Southwestern and co-senior author of the paper.

The researchers also examined an enzyme called telomerase, which "rebuilds" telomeres so they do not get shorter and signals the cell to stop dividing. Normally, telomerase is only active in cells such as stem cells and dividing immune cells, which must reproduce constantly.

But telomerase also has a dark side: When active in , it enables unlimited growth, a hallmark of cancer.

It had been thought that telomerase only works on the shortest telomeres in a cell, but in the new study, the UT Southwestern researchers found that telomerase rebuilds most or all of the telomeres in a cell for each division, not just the shortest ones, as had been thought.

"Understanding ways to inhibit this telomerase mechanism might lead to novel anticancer therapies," said Dr. Jerry Shay, professor of and co-senior author of the paper.

Clinical trials using a drug that blocks telomerase are already under way at UT Southwestern for lung cancer and chronic lymphocytic leukemia.

The new study was possible because the researchers developed a way to examine the very ends of telomeres after a single cell division. Previous research in the field required multiple cell divisions to detect such changes.

"Now that we can look at what telomerase is doing in a single cell-division cycle, there is potential for a tremendous number of follow-up studies," Dr. Wright said.

Source: UT Southwestern Medical Center (news : web)

Explore further: ACG: Recent increase in incidence of young-onset CRC

add to favorites email to friend print save as pdf

Related Stories

Short chromosomes put cancer cells in forced rest

Apr 25, 2007

A Johns Hopkins team has stopped in its tracks a form of blood cancer in mice by engineering and inactivating an enzyme, telomerase, thereby shortening the ends of chromosomes, called telomeres.

New target for cancer therapy identified

Sep 21, 2006

A new target for cancer therapy has been identified by Monash University scientists investigating the cell signalling pathways that turn on a gene involved in cancer development.

Recommended for you

ACG: Recent increase in incidence of young-onset CRC

3 hours ago

(HealthDay)—The incidence of young-onset colorectal cancer (CRC) is increasing, and the disease is more aggressive pathologically. These findings are being presented at the annual meeting of the American ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Sep 02, 2009
Suspect those little "hairs" seen at the end of telomeres are the "shadow optics of electrons under mitochondria control. For mitosis one is chosen and fired to break a hydrogen bond to start
mitosis. Once all are used the cell dies.