Rats' mental 'instant replay' drives next moves

Aug 26, 2009 By Deborah Halber
rat

(PhysOrg.com) -- Researchers at MIT’s Picower Institute for Learning and Memory have found that rats use a mental instant replay of their actions to help them decide what to do next, shedding new light on how animals and humans learn and remember.

The work will appear in the Aug. 27 issue of the journal Neuron.

“By understanding how thoughts and memories are structured, we can gain insight into how they might be disrupted in diseases and disorders of memory and thought such as Alzheimer's and ,” said study author Matthew A. Wilson, the Sherman Fairchild Professor of at the Picower Institute. “This understanding may lead to new methods of diagnosis and treatment.”

Wilson’s laboratory explores how rats form and recall memories by recording — with an unprecedented level of accuracy — the activity of single neurons in the while the animal is performing tasks, pausing between actions and sleeping. The hippocampus is the seahorse-shaped brain region researchers believe to be critical for and memory.

Wilson’s previous work has shown that after the animals run a maze, their brains “replay” during sleep the sequence of events they experienced while awake. Researchers believe this process is key to sleep-reinforced memory consolidation in both animals and humans.

The latest study shows that these sequences also occur when the animals are awake and may help them decide what to do next.

Not-so-instant replay

When a rat moves through a maze, certain neurons called “place cells,” which respond to the animal’s physical environment, fire in patterns and sequences unique to different locations. By looking at the patterns of firing cells, researchers can tell which part of the maze the animal is running.

While the rat is awake but standing still in the maze, its fire in the same pattern of activity that occurred while it was running. The mental replay of sequences of the animals’ experience occurs in both forward and reverse time order.

“This may be the rat equivalent of ‘thinking,’” Wilson said. “This thinking process looks very much like the reactivation of memory that we see during non-REM dream states, consisting of bursts of time-compressed memory sequences lasting a fraction of a second.

“So, thinking and dreaming may share the same memory reactivation mechanisms,” he said.

Memory’s building blocks

“This study brings together concepts related to thought, memory and dreams that all potentially arise from a unified mechanism rooted in the hippocampus,” said co-author Fabian Kloosterman, senior postdoctoral associate.

The team’s results show that long experiences, which in reality could have taken tens of seconds or minutes, are replayed in only a fraction of a second. To do this, the brain links together smaller pieces to construct the memory of the long experience.

The researchers speculated that this strategy could help different areas of the brain share information — and deal with multiple memories that may share content — in a flexible and efficient way. “These results suggest that extended replay is composed of chains of shorter subsequences, which may reflect a strategy for the storage and flexible expression of memories of prolonged experience,” Wilson said.

Moreover, by comparing the content of the replay with the rat's physical location on the track and his actual behavior immediately before and after the replay event the researchers could tell the rat was not just thinking about his most recent experience but also about other options, such as: "What if I turned around and went back the way I came?" or "How would I get here if my starting point is at a distant location?"

This suggests that the same brain mechanisms come into play to remember the past and consider future actions, reinforcing recent work by neuroscientists outside of MIT who determined that in humans, cognitive processes related to episodic recall and evaluation of future events overlap to a high degree.

formation and future planning are among the cognitive functions ravaged by diseases such as Alzheimer's disease, schizophrenia and psychosis.

“A better understanding of how we use memories, not only to learn from past experiences but also to explore our future options, can give us insights into how the system fails under these disease conditions,” Kloosterman said.

The MIT researchers plan to further explore the link between awake replay and cognition in animals engaged in more cognitively demanding tasks such as those involving multiple choices, where the rat has to make a decision ("do I go left or right?") based on a prior learned rule.

In addition to Wilson, the study was led jointly by Kloosterman and MIT brain and cognitive sciences graduate student Thomas J. Davidson.

Provided by Massachusetts Institute of Technology (news : web)

Explore further: Study links enzyme to autistic behaviors

add to favorites email to friend print save as pdf

Related Stories

MIT researcher explains how rats think

Feb 12, 2006

After running a maze, rats mentally replay their actions - but backward, like a film played in reverse, a researcher at the Picower Institute for Learning and Memory at MIT reports Feb. 12 in the advance online ...

Aging impairs the 'replay' of memories during sleep

Jul 29, 2008

Aging impairs the consolidation of memories during sleep, a process important in converting new memories into long-term ones, according to new animal research in the July 30 issue of The Journal of Neuroscience. The findin ...

Sleep helps build long-term memories

Jun 24, 2009

(PhysOrg.com) -- Experts have long suspected that part of the process of turning fleeting short-term memories into lasting long-term memories occurs during sleep. Now, researchers at the RIKEN-MIT Center for ...

Recommended for you

Study links enzyme to autistic behaviors

21 hours ago

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common ...

A new cause of mental disease?

Jul 23, 2014

Astrocytes, the cells that make the background of the brain and support neurons, might be behind mental disorders such as depression and schizophrenia, according to new research by a Portuguese team from ...

Molecular basis of age-related memory loss explained

Jul 22, 2014

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

Jul 22, 2014

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

User comments : 0