Getting wired: How the brain does it

Aug 26, 2009
Modern human brain
Modern human brain. Credit: Univ. of Wisconsin-Madison Brain Collection.

In a new study, researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University have found an important mechanism involved in setting up the vast communications network of connections in the brain.

A signaling pathway involving interactions between a schizophrenia-linked gene product, Calcineurin, and a transcription factor known as Nuclear Factor in Activated (NFAT) contributes to the connectivity at nerve cell (neuron) junctions or synapses and affects the extent of nerve cell projections or dendritic branches, in the visual system. The results of this study, published in the journal Neuron, may bring hope to adults suffering from injuries and offer the possibility of early diagnosis, treatments and therapies for , autism or other developmental disorders where abnormal neurological wiring is thought to occur early in life.

In early , there is an overabundance of unspecified connections between neurons. During development (and learning), these connections are pruned, leaving the stronger and more specific ones. This refinement occurs in response to a set of inputs from the environment, and is traditionally thought to be mediated through changes at synapses - the specialized junctions through which neurons communicate with each other.

Neurons possess an innate tendency to extend branched projections from the cell body known as . Dendrites receive information and form synaptic contacts with the terminals of other to allow nerve impulses to be transmitted. In the so-called "synaptotropic model" of dendritic development, interactions between dendrites and potential synaptic partners provide the extrinsic cues that help direct dendritic growth into patterns that optimize synaptic interactions. Therefore, growth or branching is most likely to occur in regions where there is a stabilized synapse and retraction is more likely in regions where synapses fail to mature or become destabilized.

"Our study shows that changes in synaptic connections are also controlled by alterations in the transcriptional profile of the cell which governs protein production," says Dr. Edward Ruthazer, neuroscientist at The Neuro and lead investigator of the study. There is a growing body of evidence that transcriptional regulation, an important step in the process of making proteins, is a key regulator of long-term changes in synaptic connectivity.

The protein Calcineurin (CaN) regulates transcriptional programs that control synapse formation and function. It has also has been strongly implicated in weakening connections between cells, and is a likely regulator of pruning of connectivity. CaN instructs the through the transcription factor NFAT, which in turn plays an important role in axonal outgrowth and neuronal response to extrinsic cues involved in circuit development and refinement.

Neil Schwartz, a graduate student in Dr. Ruthazer's lab designed a method of specifically blocking the interaction between CaN and NFAT at the nucleus in order to examine the effects on neuronal connections in the visual system. "We found that inhibiting the function of CaN resulted in more dendritic branches and more synapses, demonstrating that CaN is a potent regulator of dendritic complexity and synaptic function," explained Dr. Ruthazer. "We further demonstrated that CaN mediates its effects on neurocircuitry through its activation of NFAT transcription factors and that NFAT activity in the developing brain can be regulated by natural visual stimulation.

This extension of the synaptotrophic model taking into consideration not only the interactions with synaptic partners that shape the neural architecture, but also the transcriptional profile of nerve cells, provides vital insight into diseases in which there is abnormal neural connectivity and offers the possibility of early diagnosis and treatment.

Source: McGill University (news : web)

Explore further: Researchers reveal pathway that contributes to Alzheimer's disease

add to favorites email to friend print save as pdf

Related Stories

MIT reports key pathway in synaptic plasticity

May 21, 2007

Scientists are keenly studying how neurons form synapses--the physical and chemical connections between neurons--and the "pruning" of neural circuits during development, not least because synaptic abnormalities may partially ...

Scientists capture the first image of memories being made

Jun 18, 2009

The ability to learn and to establish new memories is essential to our daily existence and identity; enabling us to navigate through the world. A new study by researchers at the Montreal Neurological Institute ...

Location, location, location

Jul 10, 2008

Neuroscientists at Georgetown University Medical Center have solved a mystery that lies at the heart of human learning, and they say the solution may help explain some forms of mental retardation as well as provide clues ...

Researchers find new role for well-known protein

Oct 19, 2007

In a finding that may lead to potential new treatments for diseases such as Alzheimer's and Parkinson's, researchers at the Picower Institute for Learning and Memory at MIT report an unexpected role in the ...

Scientists identify machinery that helps make memories

Oct 30, 2008

A major puzzle for neurobiologists is how the brain can modify one microscopic connection, or synapse, at a time in a brain cell and not affect the thousands of other connections nearby. Plasticity, the ability of the brain ...

Recommended for you

Neurons express 'gloss' using three perceptual parameters

Sep 19, 2014

Japanese researchers showed monkeys a number of images representing various glosses and then they measured the responses of 39 neurons by using microelectrodes. They found that a specific population of neurons ...

Scientists show rise and fall of brain volume

Sep 19, 2014

(Medical Xpress)—We can witness our bodies mature, then gradually grow wrinkled and weaker with age, but it is only recently that scientists have been able to track a similar progression in the nerve bundles ...

User comments : 0