Scientists discover potential new drug delivery system

Aug 25, 2009
UCSB scientists discover potential drug delivery system
This is University of California Santa Barbara researcher Erkki Ruoslahti. Credit: Rod Rolle

(PhysOrg.com) -- Scientists at UC Santa Barbara have discovered a potential new drug delivery system. The finding is a biological mechanism for delivery of nanoparticles into tissue. The results are published in this week's Proceedings of the National Academy of Sciences.

"This work is important because when giving a drug to a patient, it circulates in the blood stream, but often doesn't get into the tissue," said senior author Erkki Ruoslahti, of the Burnham Institute for Medical Research at UCSB. "This is especially true with tumors.

"We believe this method will lead to better, more efficient delivery of drugs," he said. In this study, the scientists used cells as their target, but the method could apply to any type of cell.

The scientists developed a peptide, a small piece of protein that can carry "cargo" for delivery into the cell. The cargo could be a nanoparticle, or even a cell. Riding on the peptide, the cargo gets out of the blood vessel and penetrates the tissue.

The drug is located at one end of the peptide. At the other is the "C terminal," which has the "motif" -- an including arginine or lysine, that causes the penetration. This terminal has to be open, the researchers found. The strict requirement for the C terminal led the group to coin a new name, the "C-end rule," or CendR, pronounced "sender."

Ruoslahti explained that another exciting aspect of the study is the discovery that viruses appear to use this "CendR" system to get into cells. "It's a natural system," he said. "We're not quite clear what the exact function is, but viruses appear to take advantage of it."

Ongoing research in the Ruoslahti lab is understanding how viruses use this system, and then working to develop inhibitors to prevent viruses from entering the cell.

Source: University of California - Santa Barbara (news : web)

Explore further: Laser therapy on the repair of a large-gap transected sciatic nerve in a reinforced nerve conduit

add to favorites email to friend print save as pdf

Related Stories

Homing nanoparticles pack multiple assault on tumors

Jan 08, 2007

A collaborative team led by Erkki Ruoslahti, M.D., Ph.D., of the Burnham Institute for Medical Research at UC Santa Barbara (Burnham) has developed nanoparticles that seek out tumors and bind to their blood vessels, and then ...

Hybrid Nanoparticles Image and Treat Tumors

Sep 26, 2008

(PhysOrg.com) -- By combining a magnetic nanoparticle, a fluorescent quantum dot, and an anticancer drug within a lipid-based nanoparticle, a multi-institutional research team headed by members of the National Cancer Institute’s ...

Scientists develop nanoparticles to battle cancer

Jan 31, 2007

On a quest to modernize cancer treatment and diagnosis, an MIT professor and her colleagues have created new nanoparticles that mimic blood platelets. The team wants to use these new multifunctional particles to carry out ...

Researchers turn cancer friend into cancer foe

Oct 07, 2008

Burnham Institute for Medical Research today announced that scientists have created a peptide that binds to Bcl-2, a protein that protects cancer cells from programmed cell death, and converts it into a cancer cell killer. ...

Recommended for you

Antioxidant biomaterial promotes healing

4 hours ago

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern University's Guillermo Ameer, most of the time, that response can be negative ...

Immune response may cause harm in brain injuries, disorders

6 hours ago

Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, ...

One route to malaria drug resistance found

9 hours ago

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious ...

User comments : 0