Molten Proteins: Surface-modified liquid protein with liquid-crystalline properties

Aug 17, 2009

(PhysOrg.com) -- Proteins are solids. When heated they do not melt; instead, they decompose or sublime directly to the gas phase at low pressures. They cannot be converted into a liquid form unless they are dissolved in a solvent. A team at the University of Bristol (UK) and the Max Planck Institute of Colloids and Interfaces in Golm (Germany) has now successfully liquefied a protein without the assistance of a solvent. As the research team headed by Stephen Mann reports in the journal Angewandte Chemie, the trick is to modify the surface of the protein with a polymeric surfactant.

The researchers used ferritin for their experiments. This large protein serves animals and plants as a for iron. Ferritin forms a hollow sphere that can hold thousands of iron ions. Adam Perriman, a researcher in the Mann lab, attached polymer chains consisting of a polyethylene oxide portion and a hydrocarbon portion to these iron-containing ferritin spheres.

About 240 polymer chains were attached to every ferritin molecule. A solution of proteins modified in this way was freeze-dried. The resulting dry powder could be melted to form a transparent, viscous red liquid that solidified only upon cooling to -50 °C. In the temperature range between 30 and 37 °C the modified protein is in a liquid-crystalline state, which means the molecules are oriented more or less uniformly but (at least partly) lack the three-dimensional lattice that is formed in the crystalline state. At higher temperatures, the modified protein acts like a normal liquid. It only decomposes at temperatures above 400 °C.

How does the liquefaction work? The surfactant chains on the ferritin surface keep the protein spheres apart and shield their surfaces. This prevents the electrostatic attractive forces between polar molecular groups of neighboring spheres from holding the proteins together in a solid. The spheres are instead held together by attractive forces between the hydrocarbon ends of the surfactant chains. These forces are only strong enough to hold the molecules together as a liquid. Between 30 and 37 °C the surfactant chains arrange themselves in an ordered pattern, giving the substance liquid-crystalline properties.

“This is a very exciting result with fundamental significance for understanding liquids comprising nanostructured components,” says Mann. “Also, it represents a possible way forward to a novel state of biomolecular matter, and could therefore have a number of important applications, for example in biomedical and sensor technology.”

More information: Stephen Mann, Solvent-Free Protein Liquids and Liquid Crystals, International Edition 2009, 48, No. 34, 6242-6246, doi: 10.1002/anie.200903100

Provided by Wiley (news : web)

Explore further: Building the ideal rest stop for protons

add to favorites email to friend print save as pdf

Related Stories

Chemists make liquid protein

Jul 23, 2009

(PhysOrg.com) -- The first known example of a liquid protein has been made by chemists at the University of Bristol opening up the possibility of a number of medical and industrial applications including high-potency ...

Bristly Spheres as Capsules

Mar 06, 2009

(PhysOrg.com) -- Amphiphilic molecules, which have one water-friendly (hydrophilic) end and one water-repellant (hydrophobic) end, spontaneously aggregate in aqueous solutions to make superstructures like ...

Protein Cage Helps Nanoparticles Target Tumors

Jan 17, 2007

Researchers at Montana State University have used an engineered form of ferritin, a cage-like iron storage protein, to both synthesize and deliver iron oxide nanoparticles to tumors. The investigators, led by Trevor Douglas, ...

Recommended for you

Nature inspires a greener way to make colorful plastics

1 hour ago

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

New catalyst converts carbon dioxide to fuel

2 hours ago

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

Building the ideal rest stop for protons

Jul 29, 2014

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

Jul 29, 2014

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0