Researchers propose model for disorders caused by improper transmission of chromosomes

Aug 16, 2009

Parents of healthy newborns often remark on the miracle of life. The joining of egg and sperm to create such delightful creatures can seem dazzlingly beautiful if the chromosome information from each parent has been translated properly into the embryo and newborn.

The darker side is that when extra copies of or fewer than the normal 46 (23 from each parent) are present, tragic birth defects can occur. Now, scientists at the University of Georgia have developed a model system for plants and animals that shows the loss of a key structural can lead to the premature separation of one DNA copy called a chromatid.

The new model shows for the first time that the loss of this protein can lead to aneuploidy—the name given to birth disorders caused by extra or too few chromosomes.

Disorders caused by errors in the proper transmission of chromosomes from each parent are uncommon but tragic nonetheless. Best known may be Down Syndrome, which is caused by an extra copy of chromosome 21. Many errors in chromosome transmission are so severe that miscarriages usually occur.

"As we know, human females have all the eggs they will ever have from the time of birth, and so as they age, the protein structures on chromosomes also age," said Kelly Dawe, a geneticist and plant biologist at UGA. "If an egg is fertilized late in life, the final stages of chromosome separation may not occur properly. The goal of the work, which was done in maize, is to find out which parts of the chromosomes are most sensitive to failure. We now believe that proteins in a structure called the kinetochore are among the most sensitive to degradation or mutation. That may be a clue as to why older women have more problems with these kinds of chromosomal disorders when giving birth than younger women."

The research was published today in the journal . Co-author on the paper is former University of Georgia graduate student Xuexian Li.

Irregularities in chromosome number are usually caused during a biological event called meiosis, in which the number of chromosomes per cell is halved and, in animals, results in the formation of gametes or sex cells. While the biology of meiosis has been known for more than a century, major questions remain about how all the constituent cell parts must coordinate to make the process successful.

During the two stages of meiosis, chromosomes are first separated by type, ensuring that only one of each gene is represented and then separated in half again in preparation for fertilization. The authors showed that the first stage is orchestrated in part by the kinetochore that attaches chromosomes to the rest of the cell. When they suppressed a protein called MIS12, the chromosomes no longer separated by type and jumped to the second stage before completing the first. These failures closely mimic those seen in eggs from older women.

The cell division processes that Dawe and Li studied have implications for other diseases—such as cancer—as well. And yet a genuine payoff may come in the form of genetically improved lines of corn.

Dawe's work opens the possibility of a more positive outcome: the ability to engineer so-called "artificial chromosomes" with useful genes into corn varieties. Though that may be years off, it could offer a way to create lines that could resist drought, disease and insect pests without harming the environment.

Researchers are racing to design artificial chromosomes that behave like natural ones. With such an engineered chromosome, the positives traits researchers could give to corn plants would be almost limitless.

"You could really put genes in there at will, stacking traits that would make the plants able to withstand problems that now limit production greatly all over the world," said Dawe. "But to get from theory to practice, we will need a much clearer understanding of meiosis."

Unfortunately, most early generation artificial chromosomes have failed at meiosis in a nearly identical manner as plants with reduced MIS12. By manipulating MIS12 or other similar proteins, Dawe hopes to correct these defects.


Join PhysOrg.com on Facebook!
Follow PhysOrg.com on Twitter!
Source: University of Georgia (news : web)

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

add to favorites email to friend print save as pdf

Related Stories

Hotspots found for chromosome gene swapping

Nov 29, 2007

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead ...

Protein role in meiosis re-evaluated by researchers

Apr 17, 2008

Proteins that control cell division play a far more nuanced role than researchers previously thought in the process that gives rise to reproductive cells, according to new findings by MIT biologists.

Researchers shed light on shrinking of chromosomes

Jun 11, 2007

A human cell contains an enormous 1.8 metres of DNA partitioned into 46 chromosomes. These have to be copied and distributed equally into two daughter cells at every division. Condensation, the shortening of chromosomes, ...

Double identities lie behind chromosome disorders

Jul 08, 2007

Chromosome disorders in sex cells cause infertility, miscarriage and irregular numbers of chromosomes (aneuploidy) in neonates. A new study from Karolinska Institutet published in the scientific journal Nature Genetics shows ...

Recommended for you

Researchers develop new model of cellular movement

2 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

21 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

22 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

User comments : 0

More news stories

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

LADEE mission ends with planned lunar impact

(Phys.org) —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface ...