Scientists take early steps toward mapping epigenetic variability

Aug 14, 2009
Scientists take early steps toward mapping epigenetic variability
This is Brock Christensen, a postdoctoral research associate at the department of pathology at Brown University.

Brown University scientists have taken the first steps toward mapping epigenetic variability in cells and tissues. Mapping the human epigenome, similar to the human genome project in the 1990s, could someday allow for quicker and more precise disease diagnoses and more targeted treatments of many chronic ailments.

Details are published online in the latest edition of .

Epigenetics, a relatively new endeavor in science, refers to the control of the patterns of in cells, which gives rise to the necessary differences responsible for creating the complex and interacting tissues in the body.

Scientists globally have begun working on a Epigenome Project in a bid to compile detailed data documenting, within a person, the epigenetic changes in different types of cells and tissues, something that will complement the already-completed .

The Brown-led effort completes a far-reaching study of more than 200 human tissue samples in a bid to map variations in epigenomic structure. Collaborators from the Harvard School of Public Health and Harvard Medical School, the University of California-San Francisco, University of Minnesota-Minneapolis, Dartmouth Medical School, Women & Infants Hospital in Providence, and Brigham and Women's Hospital in Boston took part in the effort.

Their findings: Human cells display wide epigenetic variation that appears related to aging and smoking, which may increase susceptibility to several diseases such as cancer. While the scientists emphasize that more research is necessary, they say that taking a step to map epigenetic variability will help bring them closer to discovering important epigenetic differences in people, which in turn could help better diagnose disease and create more targeted treatments. Alterations in epigenetic marks in cells have been linked to many diseases and conditions in humans, including cancer.

"Scientists have already found out it is critical to look at genetic variation to diagnose disease," said Brock Christensen, a postdoctoral research associate at Brown University's Department of Pathology and Laboratory Medicine. "What we are trying to do is complement that by looking at what is normal and how much variation in epigenetics exists."

Christensen said that more tissue samples and data are needed to allow for a thorough mapping of epigenetic variability in cells.

That endeavor is important, as scientists need to gauge normal human epigenomic variability as part of the broader mapping process, said Karl Kelsey, corresponding author and a Brown professor of community health and pathology and laboratory medicine.

"The real importance of the work has to do with beginning to define what is normal in different tissues," Kelsey said. "And then you dig deeper to see what is the same and different about different people."

The study involved analysis of 217 nonpathologic human tissue sampless including blood, lung, head and neck, and brain tissue.

Source: Brown University (news : web)

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

add to favorites email to friend print save as pdf

Related Stories

Epigenetic changes discovered in major psychosis

Mar 11, 2008

Scientists have discovered epigenetic changes (i.e. chemical changes to a gene that do not alter the DNA sequence) in individuals with schizophrenia and bipolar disorder. This is the first epigenome-wide investigation in ...

USC researchers explore genetic causes for male infertility

Dec 12, 2007

Researchers at the University of Southern California (USC) suggest epigenetics, or the way DNA is processed and expressed, may be the underlying cause for male infertility. The study will be published in the Dec. 12 issue ...

Recommended for you

Refining the language for chromosomes

Apr 17, 2014

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Study says we're over the hill at 24

(Medical Xpress)—It's a hard pill to swallow, but if you're over 24 years of age you've already reached your peak in terms of your cognitive motor performance, according to a new Simon Fraser University study.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.