No experience required: Category-specific brain organization in sighted and blind humans

Aug 12, 2009

A new study finds a surprising similarity in the way neural circuits linked to vision process information in both sighted individuals and those who have been blind since birth. The research, published by Cell Press in the August 13th issue of the journal Neuron, reveals that category-specific localized activation of a critical part of the visual cortex does not require any prior visual experience and provides fascinating and valuable insight into the evolutionary history of the human brain.

The ability to recognize visually presented objects relies on a critical neural pathway called the ventral stream. Previous imaging studies of the human have demonstrated that the sight of nonliving objects, such as tools and houses, activates different regions within the ventral stream than the sight of living things, such as animals and faces. It is not known whether category-specific neural responses in the ventral stream depend on visual experience.

One way to answer this question is to explore whether category-specific activation of the ventral stream is observed in adults who have been blind since birth. Although previous research with blind humans has shown that tactile exploration of objects or imagery of object shape based on sound activates the ventral stream, it is not clear whether stimuli from different conceptual domains activate localized regions within the ventral stream.

"In particular, it is unknown whether individuals who are blind since birth will show differential responses in medial regions of the ventral stream when thinking about nonliving things," says lead study author, Dr. Bradford Mahon, who is currently at the Department of Brain and Cognitive Sciences at the University of Rochester. "Similarly, it is unknown whether, in the absence of visual experience, stimuli corresponding to living things will lead to differential responses in regions that show the same category preference in sighted individuals."

Dr. Mahon and colleagues at the Center for Mind/Brain Sciences (CIMeC) at the University of Trento, Italy, and Harvard University designed a study to test whether the medial-to-lateral organization of the ventral stream, reflecting preferences for nonliving-to-living stimuli, respectively, was present in individuals with no sight experience. Sighted and blind individuals performed a size judgment task where groups of words all belonging to the same category (nonliving or living) were presented and subjects were asked to think about the size of the first item and compare it to subsequent items. All of the individuals kept their eyes closed during the task.

"Using functional magnetic resonance imaging, we found that the same regions of the ventral stream that show category preferences for nonliving stimuli and animals in sighted adults, show the same category preferences in adults who are blind since birth," explains senior study author Dr. Alfonso Caramazza from the CIMeC and Harvard University. "Our findings suggest that the organization of the ventral stream innately anticipates the different types of computations that must be carried out over objects from different conceptual domains."

Perhaps the most exciting possibility suggested by this research is that the functional organization of the human brain is strongly constrained by innate factors. The researchers discuss a theory in their article proposing that significant parts of the human brain are innately structured around a few domains of knowledge that were critical in humans' evolutionary history, such as animals, conspecifics, and perhaps tools.

Source: Cell Press (news : web)

Explore further: Know the brain, and its axons, by the clothes they wear

add to favorites email to friend print save as pdf

Related Stories

Novelty drives choice behavior in humans

Jun 25, 2008

New research suggests that novelty drives choice behavior , even when the degree of familiarity with an option is completely unrelated to choice outcome. The research, published by Cell Press in the June 26th issue of the ...

Study: Our brains compensate for aging

Apr 04, 2006

Yale University and University of Illinois scientists say they've determined our brains compensate for aging by becoming less "specialized."

Recommended for you

Know the brain, and its axons, by the clothes they wear

Apr 18, 2014

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments : 0

More news stories

Less-schooled whites lose longevity, study finds

Barbara Gentry slowly shifts her heavy frame out of a chair and uses a walker to move the dozen feet to a chair not far from the pool table at the Buford Senior Center. Her hair is white and a cough sometimes interrupts her ...

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.