Missing link of cloud formation

Aug 11, 2009
Sky, Clouds

The discovery of an unknown hitherto chemical compound in the atmosphere may help to explain how and when clouds are formed. The discovery of the so called dihydroxyepoxides (an aerosol-precursor), is reported in this week's issue of Science by a team comprising of researchers from the California Institute of Technology (Caltech) and the University of Copenhagen.

Professor Henrik Kjærgaard from the Department of Chemistry at the University of Copenhagen calls the new compounds a missing link in the formation of .

"We know that aerosols are important in the formation of clouds but, we didn't know much about how the aerosols themselves were formed. This new compound may be just what we were looking for," says the professor who has recently moved from University of Otago, New Zealand to fill his new appointment in Copenhagen.

The new compound was originally found when a team of researchers from Caltech mounted a measuring device known as a Chemical Ionization (CIMS) on an aeroplane, and flew it over the oaken forests of Northern America.

Maple Clouds

Next to methane, deciduous plants and trees such as oak and maple, are known to be the largest source of hydrocarbons in the atmosphere; an important factor in climate-change. As a result, the researchers went into the lab to calculate what occurs to the tree-released known as isoprene, when it meets other compounds in the atmosphere.

Based on previous research, isoprene was expected to break down into smaller molecules. But previous research was done with air found over cities, where levels of the combustion by-product NOx are very high. And the chemicals formed when isoprene interacts with NOx do not easily form aerosols.

However, when subjected to air as found over pristine stretches of forest, the fate of the tree-released hydrocarbons turned out to be a very different one. Without the NOx to skew the process, isoprene unexpectedly degraded into the new compound: dihydroxyepoxide. This new compound appears to be extremely reactive and likely to form .

Clouds: Central to Climate Studies

The study detailed in this week's issue of Science, reports the laboratory measurement of the isoprene degradation by hydroxyl radicals "the vacuum cleaner of the atmosphere". The detection of these epoxides as a significant final product in the isoprene breakdown was supported by isotope and theoretical studies, and corroborated the field measurements. The theoretical studies from Kjaergaard's group at the University of Otago, improved the CIMS technique and supported the chemical degradation mechanisms proposed.

Discovering a new and unexpected atmospheric compound in the air over forests is fundamental research. Nevertheless with manmade climate-change looming on the horizon, the research might find applications sooner that expected. The new aerosol-precursor may be extremely important when researchers attempt to compute projected . "That means, that the new compound is a missing link in more that one sense", Professor Kjærgaard states.

"Clouds can retain as well as block the heat of the sun, so, if we don't understand what drives the formation of clouds, our climate-models are bound to be less than exact".

More information: This research was published in the August 7th issue of Science in the article "Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene"

Source: University of Copenhagen

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Ocean Creatures Linked to Cloud Cover Increases

Nov 07, 2006

Atmospheric scientists have reported a new and potentially important mechanism by which chemical emissions from ocean phytoplankton may influence the formation of clouds that reflect sunlight away from our ...

The insides of clouds may be the key to climate change

Feb 17, 2007

As climate change scientists develop ever more sophisticated climate models to project an expected path of temperature change, it is becoming increasingly important to include the effects of aerosols on clouds, according ...

Cloud formation affected by human activity, study says

Sep 12, 2006

University of Toronto researchers and their collaborators have discovered that solid ammonium sulphate aerosol – an airborne particle more prevalent in continental areas - can act as a catalyst to the formation of ice clouds, ...

Science paper examines role of aerosols in climate change

Sep 05, 2008

A group of scientists affiliated with the International Geosphere-Biosphere Programme (IGBP) have proposed a new framework to account more accurately for the effects of aerosols on precipitation in climate models. Their work ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0