MRI simulation of blood flow helps plan child's delicate heart surgery (w/ Video)

Aug 10, 2009
(Top) This is a 3-D model of hepatic flow distribution pre-surgery. (Bottom) These are post-surgery hepatic flow distribution options. The surgeon ultimately selected the third option, which exhibited the best performance with regard to hepatic factor distribution to the left and right lungs. Credit: Georgia Tech Image: Ajit Yoganathan

Researchers at the Georgia Institute of Technology, collaborating with pediatric cardiologists and surgeons at The Children's Hospital of Philadelphia, have developed a tool for virtual surgery that allows heart surgeons to view the predicted effects of different surgical approaches. By manipulating three-dimensional cardiac magnetic resonance images of a patient's specific anatomy, physicians can compare how alternative approaches affect blood flow and expected outcomes, and can select the best approach for each patient before entering the operating room.

"This tool helps us to get the best result for each patient," said co-author Mark A. Fogel, M.D., an associate professor of cardiology and radiology, and director of Cardiac MRI at The Children's Hospital of Philadelphia. "The team can assess the different surgical options to achieve the best flow and the optimum mixture of blood, so we can maximize the heart's energy efficiency."

In the August issue of the Journal of the American College of Cardiology: Cardiovascular Imaging, the researchers describe the surgical planning methodology, detailing how the tool helped them to plan the surgery of a four-year-old girl who was born with just one functional ventricle, or pumping chamber, instead of two.

This video is not supported by your browser at this time.
This video shows the interactive surgical planning environment that pediatric cardiologists and surgeons used to plan the surgery of a four-year-old girl who was born with just one functional ventricle instead of two. Credit: Georgia Tech Video: Ajit Yoganathan

Two in every 1,000 babies in the United States are born with this type of single ventricle heart defect. These children typically suffer from low levels of oxygen in their tissues because their oxygen-rich and oxygen-poor blood mix in their one functional ventricle before being redistributed to their lungs and body.

To correct this, the children undergo a series of three open-heart surgeries - called the staged Fontan reconstruction - to reshape the circulation in a way that allows oxygen-poor blood to flow from the limbs directly to the lungs without going through the heart. While these vascular modifications can eliminate blood mixing and restore normal oxygenation levels, surgeons and cardiologists must ensure that the lungs will receive proper amounts of blood and nutrients after the surgery so that normal development occurs.

"Preoperatively determining the Fontan configuration that will achieve balanced blood flow to the lungs is very difficult and the wide variety and complexity of patients' anatomies requires an approach that is very specific and personalized," said Ajit Yoganathan, Ph.D., Regents' Professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "With our surgical planning framework, the physicians gain a better understanding of each child's unique heart defect, thus improving the surgery outcome and recovery time."

The patient described in this paper, Amanda Mayer, age four, of Staten Island, N.Y., had previously undergone all three stages of the Fontan procedure at The Children's Hospital of Philadelphia, but developed severe complications. Her oxygen saturation was very low - only 72 percent, compared to normal levels of at least 95 percent - which indicated the possibility of abnormal connections between the veins and arteries in one of her lungs. Normally, the liver releases hormonal factors that prevent these abnormal connections, so the presence of the malformations indicated a low supply of hepatic blood to the lung.

To improve the distribution of these hormonal factors to both lungs, the surgeons needed to re-operate and reconfigure the patient's cardiovascular anatomy. Georgia Tech's surgical planning framework helped Thomas L. Spray, M.D., chief of the Division of Cardiothoracic Surgery at Children's Hospital, to determine the optimal surgical option.

"MRI acquires images of the child's heart without using radiation," said Spray. "Then we use the computerized technology to model different connections to simulate optimum blood flow characteristics, before we perform the surgery."

The image-based surgical planning consisted of five major steps: acquiring magnetic resonance images of the child's heart at different times in the cardiac cycle, modeling the preoperative heart anatomy and , performing virtual surgeries, using computational fluid dynamics to model the proposed postoperative flow, and measuring the distribution of liver-derived hormonal factors and other clinically relevant parameters as feedback to the surgeon.

Fogel collected three different types of magnetic resonance images, and Yoganathan, along with graduate students Kartik Sundareswaran and Diane de Zélicourt, generated a three-dimensional model of the child's cardiovascular anatomy. From the model they reconstructed the three-dimensional pre-operative flow fields to understand the underlying causes of the malformations.

(Top) This is the 3-D model of the anatomical configuration pre-surgery. (Bottom) These are post-surgery anatomy options, of which the surgeon ultimately selected the third option. Credit: Georgia Tech Image: Ajit Yoganathan

For this particular patient, the team saw a highly uneven flow distribution - the left lung was receiving about 70 percent of the blood pumped out by the heart, but only five percent of the hepatic blood. Both observations suggested left lung malformations, but closer examination of the flow structures in that particular patient revealed that the competition between different vessels at the center of the original Fontan connection effectively forced all hepatic factors into the right lung even though a vast majority of total cardiac output went to the left lung.

To facilitate the design of the surgical options that would correct this problem, Jarek Rossignac, Ph.D., a professor in Georgia Tech's School of Interactive Computing, developed Surgem, an interactive geometric modeling environment that allowed the surgeon to use both hands and natural gestures in three-dimensions to grab, pull, twist and bend a three-dimensional computer representation of the patient's anatomy. After analyzing the three-dimensional reconstruction of the failing cardiovascular geometry, the team considered three surgical options.

The research team then performed computational fluid dynamics simulations on all three options to investigate for each how well blood would flow to the lungs and the amount of energy required to drive blood through each connection design. These measures of clinical performance allowed the cardiologists and surgeons to conduct a risk/benefit analysis, which also included factors such as difficulty of completion and potential complications.

Of the three choices, Spray favored the option that showed a slightly higher energy cost but exhibited the best performance with regards to hepatic factor distribution to the left and right lungs. Five months after the surgery, Mayer showed a dramatic improvement in her overall clinical condition and oxygen saturation levels, which increased from 72 to 94 percent. Mayer is breathing easier and is now able to play actively like other children, according to her cardiologist, Donald Putman, M.D., of Staten Island, N.Y.

"The ability to perform this work is a team effort," Fogel added. "State-of-the-art three-dimensional cardiac MRI married to modern biomedical engineering and applied anatomy and physiology enabled this approach. With the advanced pediatric cardiothoracic surgery we have here at The Children's Hospital of Philadelphia, patients can benefit from this new method."

Source: Georgia Institute of Technology

Explore further: An end to needle phobia: device could make painless injections possible

add to favorites email to friend print save as pdf

Related Stories

No drop in IQ seen after bypass for child heart surgery

Nov 10, 2008

The use of cardiopulmonary bypass does not cause short-term neurological problems in children and teenagers after surgery for less complex heart defects, according to pediatric researchers. The new finding contrasts favorably ...

Performing surgery on a beating heart may be safer

Jan 31, 2007

According to a review of the latest clinical trials, coronary artery bypass surgery performed on a beating heart, without the aid of a heart-lung machine, is a safe option that leads to fewer negative side effects for bypass ...

Physicians mending broken hearts

Mar 29, 2009

Pediatric surgeons are able to repair complex heart defects with a survival rate of greater than 90 percent, but that doesn't necessarily mean a happy ending for these children and teens. Some may have a great quality of ...

Heart valves implanted without open-heart surgery

Jan 07, 2009

An innovative approach for implanting a new aortic heart valve without open-heart surgery is being offered to patients at NewYork-Presbyterian Hospital/Columbia University Medical Center. Known as the PARTNER (Placement of ...

Recommended for you

Head injury causes the immune system to attack the brain

4 hours ago

Scientists have uncovered a surprising way to reduce the brain damage caused by head injuries - stopping the body's immune system from killing brain cells. The study, published in the open access journal Acta Neuropathologica Co ...

User comments : 0