New steps forward in cell reprogramming

Aug 10, 2009
"When you work with mature cells, for some reason only a few of them actually reprogram into an iPS cell: Why is the reprogramming process so inefficient?" asked Konrad Hochedlinger, assistant professor of Stem Cell and Regenerative Biology. Photograph by B. D. Colen/Harvard News Office

( -- Harvard Stem Cell Institute (HSCI) researchers at Massachusetts General Hospital (MGH) have substantially improved the odds of successfully reprogramming differentiated cells into induced pluripotent stem cells (iPS) by blocking the activity of the gene that instructs the cells to stop dividing.

Konrad Hochedlinger and colleagues at the MGH Center for Regenerative Medicine also found that reprogramming efforts are more likely to be successful if they target immature rather than their more mature counterparts for reprogramming.

Induced pluripotent cells are adult cells that have been reprogrammed back to an embryo-like state in which they have regained the potential to turn into any of the 220 cell types in the body, such as , , or . “This has been a main question and main interest in the field for a long time,” says Hochedlinger. “When you work with mature cells, for some reason only a few of them actually reprogram into an iPS cell: Why is the reprogramming process so inefficient?”

The team has devised two solutions for the problem of inefficiency, one of which involves selecting only certain cell types for reprogramming. The work is being published in two separate reports, one in the journal Nature, and the other in .

Researchers know how to reprogram fully developed cells into iPS cells, yet the efficiency of the process remains very low - only about one in every 1,000 mature cells is successfully reprogrammed. Hochedlinger explained that because it’s been difficult to reprogram mature differentiated cells, he and his colleagues focused their effort on a population of relatively rare progenitor cells, cells heading down a particular developmental pathway, but not yet turned into the eventual cell type.

“By attempting to reprogram a population of progenitor cells, you have a way to increase efficiency,” says Hochedlinger. “This may be relevant when you think about upscaling iPS technology in a human setting. If you want to make iPS disease-specific cells from a limited amount of tissue material, you may want to specifically isolate these rare progenitor cells because you know the chance is much higher that they will give rise to an iPS cell compared with the mature cells which actually make the bulk of the tissue.”

Progenitor cells can give rise to a number of mature cell types within a given tissue type. For instance, blood progenitor cells give rise to all types of blood cells. Cardiac progenitors give rise to a number of different types of cardiac cells. But cardiac progenitors do not develop into blood cells, and vice versa.

“The second solution we came up with was identifying molecules whose manipulation enhances the cell division cycle, the proliferation of the cells, and thereby also enhances the efficiency of the reprogramming,” Hochedlinger continues.

Normally adult cells have a limited number of cell division they can go through before they stop dividing. “Certain molecules turn on to tell the cell ‘stop dividing now,’” he says. “We find that if we inactivate the molecule, it makes the cell continue dividing. And we can increase the efficiency of reprogramming by making the cell grow indefinitely.”

The work is an important step in “fine-tuning” the science of creating iPS cells. It both takes advantage of ’ ability to be reprogrammed, and also allows researchers to begin the process with a mature cell, where specific molecules are manipulated to obtain cell division and enhance the efficiency.

Producing iPS cells en masse will provide researchers with a way to study diseases in the laboratory, as well as provide targets for drug development, and, if the iPS cells prove to be biologically identical to human embryonic , they may provide material for cell transplants in diseases such as diabetes, Parkinson’s disease, and heart disease.

Provided by Harvard University (news : web)

Explore further: Researchers successfully clone adult human stem cells

add to favorites email to friend print save as pdf

Related Stories

Researchers piggyback to safer reprogrammed stem cells

Feb 27, 2009

Austin Smith and his research team at the Centre for Stem Cell Research in Cambridge have just published in the journal Development a new and safer way of generating pluripotent stem cells - the stem cells that can give r ...

New technique produces genetically identical stem cells

Jul 01, 2008

Adult cells of mice created from genetically reprogrammed cells—so-called induced pluripotent stem (IPS) stem cells—can be triggered via drug to enter an embryonic-stem-cell-like state, without the need for further genetic ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

( —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

( —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

( —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

( —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.