Nanoscale origami from DNA

Aug 06, 2009
Scientists at the Technische Universitaet Muenchen and Harvard University have thrown the lid off a new toolbox for building nanoscale structures out of DNA, with complex twisting and curving shapes. In the Aug 7 issue of the journal Science, they report a series of experiments in which they folded DNA, origami-like, into 3-D objects including a beach ball-shaped wireframe capsule just 50 nanometers in diameter. Credit: H. Dietz, TUM Dept. of Physics, all rights reserved.

Scientists at the Technische Universitaet Muenchen (TUM) and Harvard University have thrown the lid off a new toolbox for building nanoscale structures out of DNA, with complex twisting and curving shapes. In the August 7 issue of the journal Science, they report a series of experiments in which they folded DNA, origami-like, into three dimensional objects including a beachball-shaped wireframe capsule just 50 nanometers in diameter.

"Our goal was to find out whether we could program DNA to assemble into shapes that exhibit custom curvature or twist, with features just a few nanometers wide," says biophysicist Hendrik Dietz, a professor at the Technische Universitaet Muenchen. Dietz's collaborators in these experiments were Professor William Shih and Dr. Shawn Douglas of Harvard University. "It worked," he says, "and we can now build a diversity of three-dimensional nanoscale machine parts, such as round gears or curved tubes or capsules. Assembling those parts into bigger, more complex and functional devices should be possible."

As a medium for nanoscale engineering, DNA has the dual advantages of being a smart material - not only tough and flexible but also programmable - and being very well characterized by decades of study. Basic tools that Dietz, Douglas, and Shih employ are programmable - directing DNA strands to form custom-shaped bundles of cross-linked double helices - and targeted insertions or deletions of base pairs that can give such bundles a desired twist or curve. Right-handed or left-handed twisting can be specified. They report achieving precise, quantitative control of these shapes, with a radius of curvature as tight as 6 nanometers.

The toolbox they have developed includes a graphical software program that helps to translate specific design concepts into the DNA programming required to realize them. Three-dimensional shapes are produced by "tuning" the number, arrangement, and lengths of helices.

In their current paper, the researchers present a wide variety of nanoscale structures and describe in detail how they designed, formed, and verified them. "Many advanced macroscopic machines require curiously shaped parts in order to function," Dietz says, "and we have the tools to make them. But we currently cannot build something intricate such as an ant's leg or, much smaller, a ten-nanometer-small chemical plant such as a protein enzyme. We expect many benefits if only we could build super-miniaturized devices on the nanoscale using materials that work robustly in the cells of our bodies - biomolecules such as DNA."

More information: "Folding DNA into Twisted and Curved Nanoscale Shapes," by Hendrik Dietz, Shawn M. Douglas, and William M. Shih, published in the August 7, 2009, issue of Science.

Source: Technische Universitaet Muenchen

Explore further: Molecular beacons shine light on how cells 'crawl'

add to favorites email to friend print save as pdf

Related Stories

Scientists create custom 3D structures with 'DNA origami'

May 20, 2009

BOSTON--By combining the art of origami with nanotechnology, Dana-Farber Cancer Institute researchers have folded sheets of DNA into multilayered objects with dimensions thousands of times smaller than the thickness of a ...

DNA constraints control structure of attached macromolecules

Jun 28, 2005

A new method for manipulating macromolecules has been developed by researchers at the University of Illinois at Urbana-Champaign. The technique uses double-stranded DNA to direct the behavior of other molecules. In previous ...

'Stamping' self-assembling nanowires

Oct 17, 2008

(PhysOrg.com) -- By manipulating the way tiny droplets of fluid dry, Cornell researchers have created an innovative way to make and pattern nanoscale wires and other devices that ordinarily can be made only ...

Researchers create DNA buckyballs for drug delivery

Aug 29, 2005

DNA isn't just for storing genetic codes any more. Since DNA can polymerize -- linking many molecules together into larger structures -- scientists have been using it as a nanoscale building material, constructing ...

No Longer Just For Biology, RNA Can Now Be Built Into 3-D Arrays

Aug 11, 2004

Biomaterial to be girders for nanoscale construction projects Researchers have coaxed RNA to self-assemble into 3-D arrays, a potential backbone for nanotech scaffolds. These RNA structures can form a wider variety of shapes than double-stranded DNA can ...

Recommended for you

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

RayCherry
not rated yet Aug 07, 2009
Brilliant. Terrifying. Thrilling. Congratulations
E_L_Earnhardt
not rated yet Aug 07, 2009
Electrostatic "Field Effect" is the method of transfer signals from DNA clusters through neurons.
They can be observed by osciloscope through shielded hair-wire.