Researchers find first-ever 'wanderlust gene' in tiny bony fish

Aug 05, 2009
A marine stickleback with complete armour plates. Photo courtesy of Rowan Barrett, UBC.

(PhysOrg.com) -- A gene previously associated with physical traits is also dictating behaviour in a tiny fish widely regarded as a living model of Darwin's natural selection theory, according to a University of British Columbia study.

Measuring three to 10 centimetres, stickleback originated in the ocean but began populating freshwater lakes and streams following the last ice age. Over the past 15,000 years, freshwater sticklebacks have lost their bony lateral plates, or "armour," in these new environments. Scientists have identified a mutant form of a gene, or allele, that prohibits growth of armour and is commonly found in freshwater sticklebacks but exists in less than one per cent of their marine counterparts.

Now UBC PhD candidate Rowan Barrett and colleagues from UBC's Dept. of have found that the gene may also be contributing to the fish's tendency to relocate instead of adjusting to their surroundings - the first time a gene associated with this type of behaviour has been identified. Their findings are published today in the journal .

A male marine stickleback in reproductive condition with complete armour plates. Photo courtesy of Rowan Barrett, UBC.

"Contrary to our assumption, the low-armour allele is not linked to a preference for fresh water, or low salinity," says Barrett. "Instead, we found a strong association between having the allele and the fish's inclination to move into different salinities - a sort of 'wanderlust gene,' if you will - instead of staying put and acclimatizing to the current salinity."

"The combination of physical and behavioural traits could explain why the low-armour allele keeps turning up during marine sticklebacks' 'invasion' of freshwater habitats," says Barrett.

"The new behavioural association we've identified may also shed light on why there's still a small but constant population of armour-less sticklebacks in the sea despite the high there. Sticklebacks with the mutant allele just like to go to new places."

Source: University of British Columbia (news : web)

Explore further: Counting fish teeth reveals regulatory DNA changes behind rapid evolution, adaptation

add to favorites email to friend print save as pdf

Related Stories

Study first to show evolution's impact on ecosystems

Apr 01, 2009

Scientists have come to agree that different environments impact the evolution of new species. Now experiments conducted at the University of British Columbia are showing for the first time that the reverse is also true.

Follow that prawn

Dec 17, 2007

A new study from the University of Leicester reveals that prawns can be used by fish species to find the best places to eat.

Recommended for you

Transparent larvae hide opaque eyes behind reflections

10 hours ago

Becoming invisible is probably the ultimate form of camouflage: you don't just blend in, the background shows through you. And this strategy is not as uncommon as you might think. Kathryn Feller, from the University of Maryland ...

Peacock's train is not such a drag

12 hours ago

The magnificent plumage of the peacock may not be quite the sacrifice to love that it appears to be, University of Leeds researchers have discovered.

Spy on penguin families for science

19 hours ago

Penguin Watch, which launches on 17 September 2014, is a project led by Oxford University scientists that gives citizen scientists access to around 200,000 images of penguins taken by remote cameras monitoring ...

User comments : 0