Gene signature for cancer stem cells may provide drug targets

Aug 03, 2009

A subset of tumor cells that remain after a woman with breast cancer undergoes treatment with either anti-cancer or anti-hormone therapy shows a "gene signature" that could be used to define targets for developing new drugs against the disease, said a consortium of researchers led by Baylor College of Medicine. The report appears in the current issue of the Proceedings of the National Academy of Sciences.

"We have found that gene expression patterns in a subset of these resistant cancer cells differ from those associated with the bulk of the epithelial cells in the tumor. These patterns resemble expression patterns more closely associated with cells with a mesenchymal (a form of connective tissue) phenotype (or appearance)," said Dr. Jenny Chang, medical director of the Sue and Lester Smith Breast Center at BCM and a professor of medicine. Chang is a senior author of the paper along with Drs. Michael Lewis and Jeffrey M. Rosen, both of BCM and the Dan L. Duncan Cancer Center as well as the Breast Center.

In a previous paper, the authors showed that after patients received conventional chemotherapy, the remaining tumor contained a higher percentage of tumor-initiating cells, also known as stem cells. These remaining tumor-initiating cells were therefore largely resistant to conventional treatments.

They found that gene expression patterns in these chemoresistant cells represented a tumor-initiating gene signature, which was not only more easily detectable in a newly-defined breast cancer subtype called "claudin-low", but also enriched in human breast tumors after they had been treated with anti-cancer drugs that target the signals of hormones, said Chang. They also found that genes associated with the mesenchymal cell phenotype were increased in breast tumors after .

"This study supports a growing body of evidence that there is a particular subpopulation of cells in breast cancer that may be responsible for disease recurrence, resistance to treatment, and perhaps metastasis (cancer spread)," said Chang.

In the future, she said, the group will be looking at ways to use the gene signature they have identified to develop drugs that can combine with conventional therapy to eradicate all populations of cells within tumors.

Source: Baylor College of Medicine (news : web)

Explore further: Putting the brakes on cancer

add to favorites email to friend print save as pdf

Related Stories

Getting to the roots of breast cancer

Apr 29, 2008

The lesson learned in eradicating dandelions from your yard could apply in treating breast cancer as well, said researchers from Baylor College of Medicine in Houston in a report that appears online today in the Journal of ...

Growth factor predicts poor outcome in breast cancer

Aug 29, 2008

The response to insulin-like growth factor 1 (IGF-I) in breast cancer cells predicts an aggressive tumor that is less likely to respond to treatment, said researchers at Baylor College of Medicine in a report that appears ...

Deactivating a cancer growth promoter

Sep 25, 2008

Three enzymes called phosphatases that shut down a molecule called SRC-3 (steroid receptor coactivator 3) could provide a new pathway for fighting cancer, particularly tumors of the breast and prostate, said researchers at ...

Herceptin targets breast cancer stem cells

Jul 09, 2008

A gene that is overexpressed in 20 percent of breast cancers increases the number of cancer stem cells, the cells that fuel a tumor's growth and spread, according to a new study from the University of Michigan Comprehensive ...

Gene subnetworks predict cancer spread

Dec 15, 2008

The metastasis or spread of breast cancer to other tissues in the body can be predicted more accurately by examining subnetworks of gene expression patterns in a patient's tumor, than by conventional gene expression microarrays, ...

Genes set scene for metastasis

Apr 11, 2007

Biologists at Memorial Sloan-Kettering Cancer Center (MSKCC) have identified a set of genes expressed in human breast cancer cells that work together to remodel the network of blood vessels at the site of the primary tumor. ...

Recommended for you

Putting the brakes on cancer

15 hours ago

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

16 hours ago

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.