Viral mimic induces melanoma cells to digest themselves

Aug 03, 2009

Recent research has uncovered an unexpected vulnerability in deadly melanoma cells that, when exploited, can cause the cancer cells to turn against themselves. The study, published by Cell Press in the August issue of the journal Cancer Cell, identifies a new target for development of future therapeutics aimed at selectively eliminating this aggressive skin cancer which is characterized by a notoriously high rate of metastasis and treatment-resistance.

"Although considerable effort has been devoted to the search for molecular mechanisms that contribute to the chemo- and immunoresistance of , the average survival of patients with inoperable remains less than 10 months," explains senior study author Dr. Maria S. Soengas from the Melanoma Laboratory at the Spanish National Cancer Research Centre in Madrid, Spain. Melanoma has multiple complex genetic aberrations that make the cells difficult to destroy with current treatments.

One process that has not been studied in great detail with regards to melanoma is a type of autophagy (literally, self-eating) that involves sequestration of components within the cell for eventual degradation. Previous work has linked autophagy with both cancer cell death and survival and it is not clear whether this process might be a viable target for future drug development. Dr. Soengas and colleagues designed a series of studies to examine the interplay between autophagy and cell death in the context of tumor cell-selective elimination of melanoma cells.

The researchers discovered that melanoma cells retain the ability to recognize and respond to double-stranded RNA (dsRNA) located inside the cell cytoplasm. Most animal cells contain single-stranded RNA and see dsRNA, which is associated with viruses, as a threat. The melanoma cells responded to administration of the dsRNA mimic polyinosine-polycytidylic acid (pIC) by inducing an immune response that led to autophagy. However, the method of delivering the pIC to the melanoma cells was critical and required a carrier called polyethyleneimine (PEI) to ensure delivery of pIC to the .

The researchers went on to show that pIC links autophagy to apoptosis, a well studied cell death pathway. Significantly, the cell autonomous anti-tumor activity of pIC was observed even in animals with a suppressed immune system, a condition common to melanoma patients. "Altogether, our results provide the proof of principle for dsRNA sensors as therapeutic targets to overcome the inherent resistance of to current anticancer treatments," says Dr. Soengas.

Importantly, the pIC-PEI complex has two exciting advantages over other anticancer agents. "First, pIC-PEI can induce both autophagy and apoptosis in an efficient manner while other compounds are just partial inducers of one of the two processes. Second, pIC-PEI has a significant anti-melanoma activity in experimental mouse models without noticeable side effects." The researchers caution that further research is required before these results can be translated to the clinic.

Source: Cell Press (news : web)

Explore further: Promising new cancer therapy uses molecular 'Trash Man' to exploit a common cancer defense

add to favorites email to friend print save as pdf

Related Stories

Cell recycling protects tumor cells from anti-cancer therapy

Mar 06, 2008

Cells have their own recycling system: Discarded cellular components, from individual proteins through to whole cellular organs, are degraded and the building blocks re-used in a different place. The scientific term for this ...

Cancer drug works by overactivating cancer gene

Nov 20, 2007

University of Michigan Comprehensive Cancer Center researchers have discovered that bortezomib, a promising cancer drug, is able to strike a blow against melanoma tumor cells by revving up the action of a cancer-promoting ...

New therapeutic target for melanoma identified

Apr 16, 2009

A protein called Mcl-1 plays a critical role in melanoma cell resistance to a form of apoptosis called anoikis, according to research published this week in Molecular Cancer Research.

Variant of vitamin D receptor gene linked to melanoma risk

Sep 22, 2008

A new analysis indicates an association between a gene involved in vitamin D metabolism and skin cancer. Published in the November 1, 2008 issue of Cancer, a peer-reviewed journal of the American Cancer Society, the study ...

Recommended for you

Exercising restraint to stall tumor growth

6 hours ago

Many proteins undergo an assembly line-style process of glycosylation as they travel from a cellular structure called the endoplasmic reticulum (ER) to the Golgi apparatus and on through its various compartments, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Aug 05, 2009
Meanwhile, remember that the rate of mitosis is sensitive to TEMPERATURE! Cooling any cell or tumor will slow or stop this action! Drugs have a history of remaining when the tumor is gone!