Researchers study virulence of pandemic H1N1 virus

Jul 30, 2009

Laboratory studies at Kansas State University and the work of a K-State researcher are making headway in the effort to control the pandemic H1N1 virus.

Juergen Richt is a Regents Distinguished Professor at K-State's College of Veterinary Medicine and is a Kansas Bioscience Authority Eminent Scholar. His work at K-State and with outside collaborators is revealing the characteristics of the H1N1 virus.

Richt is among the K-State researchers who study zoonotic disease -- those that can be transmitted from animals to humans and vice versa. Zoonotic diseases will be a focus of the National Agro and Bio-Defense Facility that has been designated for Manhattan.

"Our strength at K-State is that we are very familiar with zoonotic diseases and we can contribute by working on models for animal and human diseases," Richt said. "This expertise is very critical now that an agent causing a in humans most likely originated in animal populations."

At K-State, Richt is leading in vitro research to develop better testing tools, creating a "diagnostic arsenal" if H1N1 were to spread to swine populations. Richt said they are developing diagnostic tools for the direct detection of the virus by finding or other parts of the virus in a sample, as well as tools for indirect detection. The latter approach is done by creating diagnostics that detect antibodies produced by animals infected with the virus.

"We do this work to protect the pig industry in case the virus would jump into the swine population," Richt said.

His work with outside collaborators is testing the virulence of pandemic H1N1 in animal models. In pigs, Richt and his fellow researchers found that pandemic H1N1 does infect pigs and transmits between the animals but is not fatal.

"Its important to know the clinical and pathological effects this virus has on pigs," Richt said. "It is also important to perform these experiments because we produce reagents in the pigs that we use later for diagnostic purposes as controls to validate our testing systems."

The researchers also studied the virulence of two strains of the pandemic H1N1 virus in a nonhuman primate model as a way to predict how the strains would affect humans. Comparing an isolate from California with one from Mexico, Richt and his collaborators found that the California isolate was more virulent than the Mexico isolate. Both pandemic H1N1 viruses are more virulent than seasonal H1N1 flu viruses.

"With different isolates, there are different clinical outcomes," he said.

Establishing animal models for pandemic H1N1 is important, Richt said, because physicians have two types of antiviral medications to treat influenza. One type, called adamantine-like drugs, targets the M2 protein; the other type includes drugs like Tamiflu that target the neuraminidase protein. He said that this pandemic H1N1 is already resistant to the M2 inhibitors but still is sensitive to Tamiflu.

"Some pandemic flu isolates from humans have now shown resistance to the Tamiflu," Richt said. "So the big issue now is if these Tamiflu-resistant strains take over, we have no drug to treat infected patients. And because we don't have a vaccine yet in the United States, this might be a problem.

"Pandemic is another example of how important it is to work on the nexus of human and animal health," he said.

Source: Kansas State University (news : web)

Explore further: Success short treatment against drug-resistant tuberculosis confirmed

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Poll: Many doubt hospitals can handle Ebola

2 hours ago

A new poll finds most Americans have some confidence that the U.S. health care system will prevent Ebola from spreading in this country, but they're not so sure their local hospital can safely handle a patient.

Number of Ebola cases nears 10,000

3 hours ago

The number of people with Ebola is set to hit 10,000 in West Africa, the World Health Organization said, as the scramble to find a cure gathered pace.

'Breath test' shows promise for diagnosing fungal pneumonia

3 hours ago

Many different microbes can cause pneumonia, and treatment may be delayed or off target if doctors cannot tell which bug is the culprit. A novel approach—analyzing a patient's breath for key chemical compounds made by the ...

Where Ebola battles are won

12 hours ago

(HealthDay)—Four hospitals that are home to advanced biocontainment facilities have become America's ground zero in the treatment of Ebola patients.

User comments : 0