Airway cells use 'tasting' mechanism to detect and clear harmful substances

Jul 24, 2009
This is a scanning electron microscopy image of cilia from mouse airway epithelia culture. Credit: Thomas Moninger, University of Iowa

The same mechanism that helps you detect bad-tasting and potentially poisonous foods may also play a role in protecting your airway from harmful substances, according to a study by scientists at the University of Iowa Roy J. and Lucille A. Carver College of Medicine. The findings could help explain why injured lungs are susceptible to further damage.

The study, published online July 23 in Science Express, shows that for bitter compounds that are found in taste buds on the tongue also are found in hair-like protrusions on . In addition, the scientists showed that, unlike taste cells on the tongue, these airway cells do not need help from the nervous system to translate detection of bitter taste into an action that expels the harmful substance.

The hair-like , called motile cilia, were already known to beat in a wave-like motion to sweep away mucus, bacteria and other foreign particles from the lungs.

The study is the first to show that motile cilia on airway cells not only have this "clearing" function, but also use the receptors to play a sensory role. The researchers also found that when the receptors detect bitter compounds, the cilia beat faster, suggesting that the sensing and the motion capabilities of these are linked.

"On the tongue, bitter substances trigger taste cells to stimulate , which then evoke a response -- the perception of a bitter taste. In contrast, the airway cells appear to use a different mechanism that does not require nerves," said Alok Shah, a UI graduate student and co-first author of the study. "In the airways, bitter substances both activate the receptors and elicit a response -- the increased beating of the cilia -- designed to eliminate the offending material."

Shah and co-first author Yehuda Ben-Shahar, Ph.D., an assistant professor of biology at Washington University who was a postdoctoral fellow at the UI when the study was conducted, worked in the lab of senior study author Michael Welsh, M.D., UI professor of internal medicine and molecular physiology and biophysics, who holds the Roy J. Carver Chair of Internal Medicine and Physiology and Biophysics. Welsh also is a Howard Hughes Medical Institute investigator.

"These findings suggest that we have evolved sophisticated mechanisms to guard ourselves from harmful environmental stimuli," Ben-Shahar said. "Our work also suggests that losing cilia in the lungs, due to smoking or disease, would result in a reduced general ability to detect harmful inhaled chemicals, increasing the likelihood of further damaging an injured lung."

More information: www.sciencemag.org/cgi/content/abstract/1173869

Source: University of Iowa (news : web)

Explore further: Stem cells faulty in Duchenne muscular dystrophy

add to favorites email to friend print save as pdf

Related Stories

Food peptides activate bitter taste receptors

Jan 22, 2008

Researchers from the Monell Center and Tokyo University of Agriculture have used a novel molecular method to identify chemical compounds from common foods that activate human bitter taste receptors.

Scientists Solve Sour Taste Proteins

Aug 07, 2006

A team led by Duke University Medical Center researchers has discovered two proteins in the taste buds on the surface of the tongue that are responsible for detecting sour tastes.

Scientists Discover How We Detect Sour Taste

Aug 23, 2006

A team headed by biologists from the University of California, San Diego has discovered the cells and the protein that enable us to detect sour, one of the five basic tastes. The scientists, who included researchers ...

Bitter Taste Identifies Poisons in Foods

Sep 18, 2006

Scientists at the Monell Chemical Senses Center report that bitter taste perception of vegetables is influenced by an interaction between variants of taste genes and the presence of naturally-occurring toxins ...

Scientists study cilia -- microscopic hair

May 05, 2006

Texas scientists studying microscopic hairs called cilia say they found an internal structure that's responsible for a cell's response to external signals.

Small intestine can sense and react to bitter toxins in food

Oct 09, 2008

Toxins in food often have a bad, bitter taste that makes people want to spit them out. New UC Irvine research finds that bitterness also slows the digestive process, keeping bad food in the stomach longer and increasing the ...

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

14 hours ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

19 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

20 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.