Experiments show 'artificial gravity' can prevent muscle loss in space

Jul 22, 2009

When the Apollo 11 crew got back from the moon, 40 years ago this week, they showed no ill effects from seven days spent in weightlessness. But as American astronauts and Soviet cosmonauts began conducting longer-duration space flights, scientists noticed a disturbing trend: the longer humans stay in zero gravity, the more muscle they lose. Space travelers exposed to weightlessness for a year or more — such as those on a mission to Mars, for example — could wind up crippled on their return to Earth, unable to walk or even sit up.

Now, researchers at the University of Texas Medical Branch at Galveston have conducted the first human experiments using a device intended to counteract this effect — a NASA centrifuge that spins a test subject with his or her feet outward 30 times a minute, creating an effect similar to standing against a force two and half times that of gravity. Working with volunteers kept in bed for three weeks to simulate zero-gravity conditions, they found that just one hour a day on the centrifuge was sufficient to restore muscle synthesis.

"This gives us a potential countermeasure that we might be able to use on extended space flights and solve a lot of the problems with muscle wasting," said UTMB associate professor Douglas Paddon-Jones, senior author of a paper on the centrifuge research in the July issue of the Journal of Applied Physiology. "This small amount of loading, one hour a day of essentially standing up, maintained the potential for muscle growth."

Fifteen healthy male volunteers participated in the study, carried out in UTMB's General Clinical Research Center. All spent 21 days lying in a slightly head-down position that previous investigations have shown produces effects on muscles like those of weightlessness. Eight rode the centrifuge daily. Measurements of and breakdown in thigh and calf muscle were taken at the beginning and end of the investigation, using and blood samples. The results showed that members of the centrifuge group continued to make thigh at a normal rate, while the control group's muscle synthesis rate dropped by almost half.

Paddon-Jones cautioned that the rate of muscle protein synthesis alone does not necessarily predict changes in muscle function. But, he pointed out, it was still a strong indicator that a relatively brief intervention could have a positive effect in preventing zero-gravity muscle loss — one that might also be applied on Earth.

"We've studied elderly inpatients here at UTMB — 95 percent of the time they're completely inactive, and in three days they lose more than a kilogram of muscle," Paddon-Jones said. "A human centrifuge may not be the answer, but we are interested in seeing if something as simple as increasing the amount of time our patients spend standing and moving can slow down this process. This NASA research is one of a series of important studies that we hope to ultimately translate to a clinical population."

The other authors of the Journal of Applied Physiology article ("Artificial gravity maintains skeletal protein synthesis during 21 days simulated microgravity") were assistant professor T. Brock Symons, associate professor Melinda Sheffield-Moore, associate professor David L. Chinkes and professor Arny Ferrando. NASA, the National Institutes of Health and UTMB's Claude D. Pepper Older Americans Independence Center provided support for the investigation.

Source: University of Texas Medical Branch at Galveston (news : web)

Explore further: Researchers take 'first baby step' toward anti-aging drug

add to favorites email to friend print save as pdf

Related Stories

NASA Gives Artificial Gravity a New Spin

Apr 29, 2005

NASA will use a new human centrifuge to explore artificial gravity as a way to counter the physiologic effects of extended weightlessness for future space exploration. The new research will begin this summer at ...

Muscle loss tested in artificial gravity

Sep 15, 2005

University of California-Irvine researchers say a bike-like centrifuge that creates artificial gravity may help astronauts combat muscle atrophy in space.

A stronger future for the elderly

Sep 11, 2008

Experts at The University of Nottingham are to investigate the effect of nutrients on muscle maintenance in the hope of determining better ways of keeping up our strength as we get old.

More muscle for the argument to give up smoking

Jul 09, 2007

Researchers at The University of Nottingham have got more bad news for smokers. Not only does it cause cancer, heart attacks and strokes but smokers will also lose more muscle mass in old age than a non-smoker. The effect ...

Recommended for you

Biomedical team creates 'nerve on a chip'

Dec 24, 2014

Michael J. Moore and J. Lowry Curley first met in the laboratory as professor and student. Now the two Tulane University researchers have started a new biomedical company that's winning praise and awards.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Daryl
1 / 5 (1) Jul 22, 2009
yawn....... really?
docknowledge
not rated yet Jul 23, 2009
Not an incredibly insightful experiment. This effect is predicted and so well known that even sci fi hacks have been using it for decades.
Daryl
not rated yet Jul 23, 2009
they must be trying to use up that grant money.
Spinningufo
not rated yet Jul 23, 2009
For a better solution, check out a documentary I posted on youtube at
http://www.youtub...07LVFcIc
NASA could save a lot of tax money by taking advantage of my 20 years of experience designing equipment, training others, and using artificial gravity as an astonishing form of exercise. I wait patiently to hear from NASA on this issue.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.