NRL scientist receives patent for rugged-lightweight spectrometer assembly

Jul 22, 2009
This is a schematic diagram of the Spatial Heterodyne Hpectrometer (SHS) Interferometer. Credit: Naval Research Laboratory

Naval Research Laboratory (NRL) Space Science Division scientist, Dr. Christoph R. Englert, is awarded patent by the United States Patent and Trademark Office for a more cost effective, rugged and lightweight compression assembly design for spatial heterodyne spectrometer (SHS) interferometer applications. This innovative design approach introduces the flexibility of exchanging optical components while conserving the ruggedness of previous monolithic SHS interferometer designs and reducing their high production costs; a factor that has impeded wide-spread military and commercial application.

"This technique provides a faster, more flexible and more cost effective way to fabricate rugged SHS interferometers," said Englert. "By eliminating the labor and cost intensive practice of optical contacting—a method of bonding flat surfaces without the use of adhesives—production, assembly and material alignment can be simplified without compromising optical performance or durability."

Unlike the first monolithic SHS development led by NRL that used optical contacting to bond all the interferometer components into a single block, this method also allows greater design flexibility by providing the option of using various spacer materials (e.g., different glasses, metals, or combinations of materials), further optimizing application benefits.

SHS systems are compact in size, can be field widened to increase their throughput advantage, have no moving parts and can also be built in all-reflection configurations. Due to its compact size, ruggedness and sensitivity, SHS is especially well suited for high resolution, space- and ground-based spectroscopy of diffuse sources, including atmospheric emissions or trace gas absorptions.

Field-widened spatial heterodyne spectroscopy was conceived in the late 1980s by Fred Roesler, professor of astrophysics at University of Wisconsin and John Harlander, current professor of physics, astronomy and engineering science at St. Cloud State University, Minn. SHS interferometers typically include a beamsplitter, two gratings, and two field-widening prisms. The optical components of SHS interferometers must be mounted within precise tolerances to achieve high performance.

SHS technology has proven to be very successful in NRL's Spatial Heterodyne IMager for MEsospheric Radicals (SHIMMER), which is providing mesospheric hydroxyl concentration profiles and polar mesospheric cloud measurements from the NRL/STP satellite STPSat-1 to improve the understanding of the chemistry and dynamics of the middle atmosphere.

Source: Naval Research Laboratory (news : web)

Explore further: The first direct-diode laser bright enough to cut and weld metal

add to favorites email to friend print save as pdf

Related Stories

SHIMMER successfully observes Earth's highest clouds

Nov 13, 2008

The Naval Research Laboratory's Spatial Heterodyne Imager for Mesospheric Radicals (SHIMMER) has successfully observed a second northern season of Polar Mesospheric Clouds (PMCs), which are the Earth's highest ...

An environment-friendly rechargeable battery

Jun 09, 2005

A high performance rechargeable NiZn battery offers a viable alternative to hazardous NiCd cells While researching a new rechargeable battery for electric scooters, French and Spanish partners in EUREKA project NITIN SCOOTER ...

HICO-RAIDS experiments ready for payload integration

Sep 26, 2008

The Hyperspectral Imager for the Coastal Ocean (HICO) and the Remote Atmospheric and Ionospheric Detection System (RAIDS), both developed at the Naval Research Laboratory (NRL), are ready for payload integration following ...

Recommended for you

'Comb on a chip' powers new atomic clock design

Jul 22, 2014

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Creating optical cables out of thin air

Jul 22, 2014

Imagine being able to instantaneously run an optical cable or fiber to any point on earth, or even into space. That's what Howard Milchberg, professor of physics and electrical and computer engineering at ...

New material puts a twist in light

Jul 18, 2014

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry ...

User comments : 0