Chemists discover ozone-boosting reaction

Jul 20, 2009 by Jennifer Fitzenberger
Chemists discover ozone-boosting reaction
Daniel A. Anderson / University Communications

(PhysOrg.com) -- Burning of fossil fuels pumps chemicals into the air that react on surfaces such as buildings and roads to create photochemical smog-forming chlorine atoms, UC Irvine scientists report in a new study.

Under extreme circumstances, this previously unknown chemistry could account for up to 40 parts per billion of - nearly half of California's legal limit on outdoor . This reaction is not included in computer models used to predict air pollution levels and the effectiveness of ozone control strategies that can cost billions of dollars.

Ozone can cause coughing, throat irritation, chest pain and shortness of breath. Exposure to it has been linked to asthma, bronchitis, cardiopulmonary problems and premature death.

"Realistically, this phenomenon probably accounts for much less than 40 parts per billion, but our results show it could be significant. We should be monitoring it and incorporating it into atmospheric models," said Barbara Finlayson-Pitts, Distinguished Professor of Chemistry and lead author of the study. "We still don't really understand important elements of the atmosphere's chemistry."

Study results appear the week of July 20 in the .

When fossil fuels burn, compounds called nitrogen oxides are generated. Previously, scientists believed these would be eliminated from the atmosphere upon contact with surfaces.

But UCI scientists discovered that when nitrogen oxides combine with hydrochloric acid from airborne sea salt on buildings, roads and other particles in the air, highly reactive chlorine atoms are created that speed up smog formation.

Hydrochloric acid also is found indoors in cleaning products. When it interacts with nitrogen oxides from appliances such as gas stoves, chlorine compounds form that cause unusual chemistry and contribute to corrosion indoors.

The study was undertaken by scientists involved with AirUCI, an Environmental Molecular Sciences Institute funded by the National Science Foundation. UCI's Jonathan Raff conducted experiments; Bosiljka Njegic and Benny Gerber made theoretical predictions; and Wayne Chang and Donald Dabdub did the modeling. Mark Gordon of Iowa State University also helped with theory.

Said Finlayson-Pitts: "This is a great example of how our unique collaborative group can produce some really great science."

Source: University of California - Irvine

Explore further: Study shows no lead pollution in oilsands region

add to favorites email to friend print save as pdf

Related Stories

Scientists find chlorine may contribute to ozone formation

Jun 13, 2006

Standard methods of predicting air pollution don’t take atmospheric chlorine into account, but the chemical could be responsible for 10 percent or more of daily ozone production in local air, research at UC Irvine has found.

Recommended for you

Study shows no lead pollution in oilsands region

2 hours ago

New research from a world-renowned soil and water expert at the University of Alberta reveals that there's no atmospheric lead pollution in Alberta's oilsands region—a finding that contradicts current scientific ...

User comments : 0