Scientists discover how flu damages lung tissue

Jul 17, 2009

A protein in influenza virus that helps it multiply also damages lung epithelial cells, causing fluid buildup in the lungs, according to new research from the University of Alabama at Birmingham (UAB) and Southern Research Institute . Publishing online this week in the journal of the Federation of American Societies for Experimental Biology, the researchers say the findings give new insight into how flu attacks the lungs and provides targets for new treatments.

In severe cases of flu, fluid accumulates in the lungs, making it difficult to breathe and preventing oxygen from reaching the . The researchers report that M2, a protein in the flu virus, damages a protein responsible for clearing fluid from the lungs by increasing the amount of oxidants, or free radicals, within the cells. Oxidants are necessary for proper cell function, but can become toxic if uncontrolled.

"Under normal conditions, oxidants play an important role, as they destroy pathogens in cells. But our findings suggest that lowering the number of oxidants, or preventing their increase, would prevent damage to the lungs resulting from the M2 protein," said Sadis Matalon, Ph.D., vice chairman for research and professor of anesthesiology at UAB and principal investigator of the study.

The researchers say the recent outbreak of H1N1 influenza and the rapid spread of this strain across the world highlight both the need to better understand how the virus damages the lungs and the urgency to find new treatments. Influenza is a contagious disease leading to about 36,000 human deaths and 200,000 hospitalizations every year in the United States alone.

Matalon, along with co-investigators Ahmed Lazrak, Ph.D., and Karen E. Iles, Ph.D., from the Department of Anesthesiology at UAB, and James W. Noah, Ph.D., and Diana L. Noah, Ph.D., of Southern Research, injected frog eggs with M2 protein and the protein involved with fluid removal. Using molecular biology techniques, they removed part of the flu protein until they could isolate the segment responsible for the lung injury.

"We found that when the flu protein was shortened in length, it did not damage the lung protein responsible for removing fluid from the lungs," said Diana Noah. "This is important information as it will enable us to design drugs that will hopefully prevent this M2 flu from functioning properly, making it possible for those infected with the flu to recover faster."

Another set of experiments involved injecting intact flu proteins and their target lung proteins into frog eggs along with agents that remove oxidants. The findings of the study show that following this procedure the lung proteins were no longer damaged by the flu viruses.

The team then repeated the experiments in cells from human lungs and found the same results. "We were able to understand the basic mechanisms by which the flu damages key components of the lungs in a simple system, such as the frog eggs, and then confirm these findings in human lung cells," said Matalon.

The researchers are hesitant to say that these results indicate a simple antioxidant, such as vitamin C, can prevent or minimize flu. "The issue is too complex and we simply can't answer that yet," said James Noah. "Vaccination is our leading defense against flu and we have anti-viral drugs that are effective in some cases, but viruses show a remarkable ability to mutate, rendering vaccines and drugs less effective. Having a new target for potential interventions opens up an entirely new approach to combating influenza."

Source: University of Alabama at Birmingham (news : web)

Explore further: New method for reducing tumorigenicity in induced pluripotent stem-cell based therapies

add to favorites email to friend print save as pdf

Related Stories

Scientists isolate genes that made 1918 flu lethal

Dec 29, 2008

By mixing and matching a contemporary flu virus with the "Spanish flu" — a virus that killed between 20 and 50 million people 90 years ago in history's most devastating outbreak of infectious disease — researchers have ...

New target for anti-flu drug development

Aug 15, 2007

Scientists at Cure Lab, Inc., a biotechnology company based in Canton, Massachusetts, in collaboration with researchers at Boston University and Harvard Medical School have discovered a potential new target for the development ...

Chemists track how drug changes, blocks flu virus

Feb 01, 2008

An anti-virus drug attacks influenza A by changing the motion and structure of a proton channel necessary for the virus to infect healthy cells, according to a recently published research paper by two Iowa ...

Recommended for you

Intestinal parasites are 'old friends,' researchers argue

1 hour ago

Intestinal parasites such as tapeworms, hookworms and a protist called Blastocystis can be beneficial to human health, according to a new paper that argues we should rethink our views of organisms that live off the human ...

Researchers unlock the protein puzzle

1 hour ago

By using brightly hued dyes, George Mason University researchers discovered an innovative way to reveal where proteins touch each other, possibly leading to new treatments for cancer, arthritis, heart disease and even lung ...

Scientists image a beating heart in 3D (w/ Video)

3 hours ago

Researchers of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden report how they managed to capture detailed three-dimensional images of cardiac dynamics in zebrafish. The novel approach: ...

User comments : 0