Surprising new insights into the repair strategies of DNA

Jul 15, 2009

( -- A microscopic single-celled organism, adapted to survive in some of the harshest environments on earth, could help scientists gain a better understanding of how cancer cells behave.

Experts at The University of Nottingham were astonished to discover that the archaeon Haloferax volcanii was better at repairing DNA damage if enzymes, that are widely considered to be critically important in coordinating the repair of DNA, were mutated.

Dr Thorsten Allers, from the Institute of Genetics, said: "These results surprised us. It is the first time, as far as we know, that anybody has found such resistance to DNA damage in mutant cells. Normally, cells that are missing enzymes for DNA repair become more sensitive to DNA damage."

Like , archaea are polyploid — which means they contain more than two sets of . Although similar in structure and appearance to bacteria, archaea share a with eukaryotes, which include plant and animals. This kinship is at its closest in the way archaea process DNA. Although Dr Allers's discovery is at the basic biological level, it is the similarities with cancer cells that make him convinced that scientists have much more to learn from archaea.

Discovered just 32 years ago, there are less then 200 experts around the world studying archaea. On the other hand, the mechanisms by which cells perform the repair of DNA breaks has been the subject of decades of research using bacterial and eukaryotic cells. We are only just beginning to learn how this process works in archaea.

DNA breaks can be caused by, among other things, radiation, UV rays and . Dr Allers said: "All organisms can use enzymes to simply glue the broken strands of DNA back together, but this is prone to error and can give rise to mutations which cause cancer. The alternative is to perform a kind of molecular gymnastics called recombination, where healthy strands of matching DNA are used to repair the broken ends. This is a complicated and time-consuming strategy to mend DNA, but avoids mutations. When the enzymes that carry out recombination are defective, cancer can develop more easily. This is what happens in patients with in the BRCA breast cancer genes."

Dr Allers's research, published in the journal PLoS Genetics, shows how, unlike other organisms, Haloferax volcanii deliberately avoids using recombination to repair DNA breaks. His results suggest that other polyploid organisms, such as cancer cells, might work in much the same way. What scientists need to know now is why.

Source: University of Nottingham (news : web)

Explore further: Assortativity signatures of transcription factor networks contribute to robustness

add to favorites email to friend print save as pdf

Related Stories

Study: Cells prevent DNA repair

Nov 23, 2005

Scientists say they've discovered cells co-opt the machinery that usually repairs broken strands of DNA to protect the integrity of chromosomes.

Enhanced DNA-repair mechanism can cause breast cancer

Oct 15, 2007

Although defects in the "breast cancer gene," BRCA1, have been known for years to increase the risk for breast cancer, exactly how it can lead to tumor growth has remained a mystery. In the October 15, 2007, issue of the ...

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

Researchers probe a DNA repair enzyme

Feb 18, 2008

Researchers have taken the first steps toward understanding how an enzyme repairs DNA. Enzymes called helicases play a key role in human health, according to Maria Spies, a University of Illinois biochemistry ...

Recommended for you

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 0