Single gene mutation responsible for 'catastrophic epilepsy'

Jul 07, 2009

Catastrophic epilepsy - characterized by severe muscle spasms, persistent seizures, mental retardation and sometimes autism - results from a mutation in a single gene, said Baylor College of Medicine researchers in a report that appears in the current issue of the Journal of Neuroscience.

The BCM department of neurology team replicated the defect in mice, developing a of the disease that could help researchers figure out effective treatments for and new approaches to curing the disease, said Dr. Jeffrey Noebels, professor of neurology, neuroscience and molecular and human genetics at BCM and director of the Blue Bird Circle Developmental Neurogenetics Laboratory at BCM, where the research was performed.

"While many genes underlying various forms of childhood epilepsy have been identified in the past decade, most cause a disorder of 'pure' seizures," said Noebels. Why some children have a more complicated set of disorders beginning with major motor spasms in infancy followed by cognitive dysfunction and developmental disorders such as remained a mystery until the discovery by the BCM team that a mutation in only a single gene explains all four features of catastrophic epilepsy.

A gene known as Aristaless-related homeobox or ARX has a specific mutation called a triplet repeat, which means that a particular (in this case, GCG) is repeated many times in the gene. When the researchers duplicated this particular mutation in specially bred mice, the animals had motor spasm similar to those seen in human infants. Recordings of their showed that they had several kinds of seizes, included absence epilepsy and general convulsion. They also had learning disabilities and were four times more likely to avoid contact with other mice than their normal counterparts. This behavior is similar to that seen in children with autism or similar disorders in the same spectrum.

"The new model is an essential tool to find a cure for the disorder," said Noebels.

"Mutation of the ARX gene was previously known to affect interneurons, a class of cells that inhibit electrical activity in the brain," said Dr. Maureen Price, the report's lead author and an instructor in neurology at BCM.

When researchers evaluated the brains of the adult mice with the mutated gene, they found that a special class of interneurons had never developed in specific brain regions.

"Further study will allow use to pinpoint which brain region is liked to the autistic-like behavior," said Price.

Two members of the research team - Dr. James Frost, professor of neurology at BCM, who developed the concept of the special mouse, and Dr. Richard Hrachovy, also a professor of neurology at BCM - are pioneers in the study of human infantile spasms.

"At present there is no proven cure to offer children with this specific epilepsy", said Noebels. "We now have new clues into the mechanism and have already initiated studies with a new class of drugs not previously explored for this disorder." The new drug testing is supported by the private foundation People Against Childhood Epilepsy.

More information: www.jneurosci.org/

Source: Baylor College of Medicine (news : web)

Explore further: Mutation disables innate immune system

add to favorites email to friend print save as pdf

Related Stories

Epilepsy genes may cancel each other

Nov 04, 2007

Inheriting two genetic mutations that can individually cause epilepsy might actually be “seizure-protective,” said Baylor College of Medicine researchers in a report that appears online today in the journal Nature Ne ...

The Rett gene -- a rogue activator

May 29, 2008

In 1999, when Dr. Huda Zoghbi and her Baylor College of Medicine colleagues identified a mutation of the gene MeCP2 as the culprit in Rett syndrome, a neurodevelopmental disorder, the discovery was only the prelude to understanding ...

Study finds first-ever genetic animal model of autism

Dec 09, 2007

By introducing a gene mutation in mice, investigators have created what they believe to be the first accurate model of autism not associated with a broader neuropsychiatric syndrome, according to research presented at the ...

Recommended for you

Mutation disables innate immune system

17 hours ago

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 0